Prospects for the creation of a product’s digital twin in the development of robotic systems

Prospects for the creation of a product’s digital twin in the development of robotic systems

Nikolay V. Malyutin
Doctor of Technical Science, Professor, LLC «Design Bureau of Informatics, Hydroacous-tics and Communications» (LLC «KB IGAS»), room 1, 17, Novopeschanaya ul., Moscow, 125252, Russia; Non-commercial partnership «National Agency for Energy Conservation and Renewable Energy Sources» (NP «NAEVI»), Deputy General Director for Science, room 718, 5, ul. Butyrsky Val, Moscow, 125047, Russia, tel.: +7(926)667-01-02, This email address is being protected from spambots. You need JavaScript enabled to view it.

Mikhail D. Chizhikov
Bauman Moscow State Technical University (BMSTU), Student, 5-1, 2-ya Baumanskaya ul., Moscow, 105005, Russia, tel.: +7(916)724-27-90, This email address is being protected from spambots. You need JavaScript enabled to view it.

Yuri E. Yeretin
Professor, LLC «KB IGAS», Chief Research Scientist, room 1, 17, Novopeschanaya ul., Mos-cow, 125252, Russia

Alexander S. Shalumov
Doctor of Technical Science, Professor, «ASONIKA» Scientific-Research Institute, General Director, room 69, 11, ul. Mashinostroiteley, Kovrov, Vladimirskaya oblast, 601914, Russia, tel.: +7(916)581-25-77, This email address is being protected from spambots. You need JavaScript enabled to view it., ORCID: 0000-0002-5099-7393


Received 29 September 2021

Abstract
End-to-end design is a process that eliminates the boundary between the stages of dynamic system’s synthesis, i.e. the synthesis of mathematical models of the control law and the stage of implementation of this law. ASONIKA CAE has the technology of end-to-end design and virtual testing of an electronic product model. For this purpose, ASONIKA is equipped with an extensive database consisting of 30,000 items. To confirm the seriousness of the ASONIKA project, the state standards (GOST) that entered into force on March 01, 2021, are presented.

Key words
End-to-end design, CAE, database, state standards, GOST, ASONIKA, digital twin.

DOI
10.31776/RTCJ.10104

Bibliographic description
Malyutin, N. et al., 2022. Prospects for the creation of a product’s digital twin in the development of robotic systems. Robotics and Technical Cybernetics, 10(1), pp.32-42.

UDC identifier:
004.896

References 

  1. Alekseenko, V.N., 2013. Skvoznaya 3D-tekhnologiya ASKON v zashchishchennom ispolnenii dlya predpriyatiy OPK [End-to-end 3D ASCON technology in a secure design for defense industry enterprises]. Mezhotraslevaya informatsionnaya sluzhba [Interindustry Information Service], 4, pp.21-23. (in Russian).

     

  2. Shalumov, A.S., 2013. Avtomatizirovannaya Sistema ASONIKA dlya Modelirovaniya Fizicheskikh Protsessov v Radioelektronnykh Sredstvakh s Uchetom Vneshnikh Vozdeystviy [Automated System ASONIKA for Simulation of Physical Processes in Radio-Electronic Means Taking into Account External Influences]. Moscow : Radiotekhnika Publ., p.424. (in Russian).

     

  3. Shalumov, A.S. and Shalumov, M.A., 2017. Opyt Primeneniya Avtomatizirovannoy Sistemy ASONIKA v Promyshlennosti Rossiyskoy Federatsii [Experience of Using the ASONIKA Automated System in the Industry of the Russian Federation]. Russia, Vladimir : Vladimir branch of the RANEPA, p.422. (in Russian).

     

  4. Shalumov, A.S. et al., 2007. Avtomatizirovannaya Sistema ASONIKA dlya Proektirovaniya Vysokonadezhnykh Radioelektronnykh Sredstv na Printsipakh CALS-Tekhnologiy. Tom 1 [Automated System ASONIKA for the Design of Highly Reliable Electronic Equipment Based on the Principles of CALS Technologies. Volume 1]. Moscow : Energoatomizdat Publ., p.368. (in Russian).

     

  5. Svetlanov, A.I., Orel, A.M. and Malyutin, N.V., 2013. Virtual'naya inzheneriya v radioelektronnoy promyshlennosti [Virtual engineering in the electronics industry]. Mezhotraslevaya informatsionnaya sluzhba [Interindustry Information Service], 3, pp.22-27. (in Russian).

     

  6. Malyutin, N.V., Mezhlumov, G.M. and Zagorodnikov, M.G., 2013. Modelirovanie kompleksov, sistem i tekhnologiy [Modeling of complexes, systems and technologies]. Mezhotraslevaya informatsionnaya sluzhba [Interindustry Information Service], 3, pp.31-35. (in Russian).

     

  7. Malyutin, N.V., Svetlanov, A.I. and Orel, A.M., 2013. Apparatno-programmnyy kompleks virtual'noy inzhenerii tsentra modelirovaniya OAO NPTs «Sapsan» [Hardware-software complex of virtual engineering of the modeling center of OAO SPC «Sapsan»]. Mezhotraslevaya informatsionnaya sluzhba [Interindustry Information Service], 4, pp.11-14. (in Russian).

     

  8. Davydov, K.A. and Rodionova, E.N., 2013. O programmnom konvertere dannykh dlya obespecheniya vzaimodeystviya SAPR [About the software data converter for CAD interoperability]. Mezhotraslevaya informatsionnaya sluzhba [Interindustry Information Service], 4, pp.16-20. (in Russian).

     

  9. KOMPAS 3-D, u.d. Askon – Rossiyskoe inzhenernoe PO dlya proektirovaniya, proizvodstva i biznesa [Askon – Russian engineering software for design, production and business]. Available at: <https://ascon.ru/products/7/review/> (Accessed 18 January 2022).

     

  10. 2020. GOST R 60.0.7.2-2020. Roboty i robototekhnicheskie ustroystva. Tekhnologiya matematicheskogo modelirovaniya i virtualizatsii ispytaniy bazovykh elementov robototekhnicheskikh kompleksov na vneshnie vozdeystvuyushchie faktory na vsekh etapakh zhiznennogo tsikla [Russian National State Standard R 60.0.7.2-2020. Robots and robotic devices. Technology of mathematical modeling and virtualization of testing the basic elements of robotic systems for external influencing factors at all stages of the life cycle]. (in Russian).

     

  11. 2020. GOST R 60.0.7.3-2020. Roboty i robototekhnicheskie ustroystva. Metod matematicheskogo modelirovaniya pokazateley nadezhnosti i virtualizatsii ispytaniy na nadezhnost' bazovykh elementov robototekhnicheskikh kompleksov pri proektirovanii [Russian National State Standard R 60.0.7.3-2020. Robots and robotic devices. The method of mathematical modeling of reliability indicators and virtualization of reliability tests of the basic elements of robotic systems in design]. (in Russian).

     

  12. 2020. GOST R 60.0.7.4-2020. Roboty i robototekhnicheskie ustroystva. Metody matematicheskogo modelirovaniya i virtualizatsii ispytaniy bazovykh elementov robototekhnicheskikh kompleksov na elektromagnitnye vozdeystviya pri proektirovanii [Russian National State Standard R 60.0.7.4-2020. Robots and robotic devices. Methods of mathematical modeling and virtualization of testing the basic elements of robotic systems for electromagnetic effects in design]. (in Russian).

     

  13. 2020. GOST R 60.0.7.5-2020. Roboty i robototekhnicheskie ustroystva. Metody postroeniya baz dannykh elektroradioizdeliy i konstruktsionnykh materialov dlya matematicheskogo modelirovaniya i virtualizatsii ispytaniy bazovykh elementov robototekhnicheskikh kompleksov na vneshnie vozdeystvuyushchie faktory na vsekh etapakh zhiznennogo tsikla [Russian National State Standard R 60.0.7.5-2020. Robots and robotic devices. Methods for building databases of electrical and radio products and structural materials for mathematical modeling and virtualization of testing the basic elements of robotic systems for external influencing factors at all stages of the life cycle]. (in Russian).

Editorial office address: 21, Tikhoretsky pr., Saint-Petersburg, Russia, 194064, tel.: +7(812) 552-13-25 e-mail: zheleznyakov@rtc.ru