Method of localization of agricultural robotic vehicles using AESA established by an UAV complex

Method of localization of agricultural robotic vehicles using AESA established by an UAV complex

Aleksandr V. Denisov
Saint-Petersburg Federal Research Center of the Russian Academy of Sciences, Saint Petersburg Institute for Informatics and Automation of the Russian Academy of Sciences (SPIIRAS), Junior Research Scientist, 39, 14 line V.O., Saint Petersburg, 199178, Russia, tel.: +7(812)328-04-21, This email address is being protected from spambots. You need JavaScript enabled to view it.

Received 6 November 2020

This paper considers a relevant method to ensure communication and object location in vast agricultural areas. To solve this problem an operational scenario was proposed, an approach, involving a complex of several UAVs, which establish an AESA; an algorithm for building an optimal path, along which the UAV complex moves, formulas for calculating AESA direction pattern for linear and flat formations of UAV groups, formulas for calculating time, required for terrain scanning with various areas. In such complex on each UAV an antenna with phase shifter is mounted. The paper also considers modeling and comparison of different approaches to motion of an UAV complex for terrain scanning. Due to application of active electronically scanned arrays, the proposed localization method is characterized by high noise immunity, is better shielded from noise, less dependent on weather conditions and appliable at night time. Unlike other methods, it supports wide-range transmission and reception of data. Thereby, application of AESA makes this method robust and practical for localization and communication establishment, whereas the proposed algorithm for building of optimal path, along which the robotic complex moves, enables to reduce time, required for area scanning. Consequently, this method allows achieving the shortest distance that the UAV complex has to cover.

Key words
Object localization, agricultural area scanning, AESA, communication establishment methods, UAV, mobile robotic platform.


Bibliographic description
Denisov, A., 2021. Method of localization of agricultural robotic vehicles using AESA established by an UAV complex. Robotics and Technical Cybernetics, 9(2), pp.112-120.

UDC identifier:


  1. Barriquello, C.H. et al., 2017. Performance assessment of a low power wide area network in rural smart grids. In: IEEE 52nd International Universities Power Engineering Conference (UPEC), pp.1-4.
  2. Ghribi, B. and Logrippo, L., 2000. Understanding GPRS: the GSM packet radio service. Computer Networks, 34(5), pp.763-779.
  3. Wadhwa, L.K., Deshpande, R.S. and Priye, V., 2016. Extended shortcut tree routing for ZigBee based wireless sensor network. Ad Hoc Networks, 37, pp.295-300.
  4. Krasnov, P.A. and Roslyakov, A.V. Model' besprovodnoj sensornoj seti na osnove tekhnologii zigbee. Problemy tekhniki i tekhnologii telekommunikacij [Model of a wireless sensor network based on zigbee technology. Problems of engineering and technology of telecommunications.]. Opticheskie tekhnologii v telekommunikaciyah [Optical technologies in telecommunications], pp.176-177. (in Russian).
  5. Hart, J. and Hartová, V., 2018. Improvement of Monitoring of Cattle in Outdoor Enclosure Using IQRF Technology.
  6. Tolstoj, I.M., Zaharov, K.S. and Kan, I.A., 2019. Lokalizacija i navigacija mul'tiagentnoj robototehnicheskoj sistemy na osnove ARUCO-markerov [Localization and navigation of a multi-agent robotic system based on ARUCO markers]. In: Pjatyj Vserossijskij nauchno-prakticheskij seminar «Bespilotnye transportnye sredstva s jelementami iskusstvennogo intellekta» (BTS-II-2019) [Fifth All-Russian Scientific and Practical Seminar on Unmanned Vehicles with Artificial Intelligence Elements], pp.39-47. (in Russian).
  7. Azmi, I., Shafei, M.S., Nasrudin, M.F., Sani, N.S. and Abd Rahman, A.H., 2018. ArUcoRSV: Robot Localisation Using Artificial Marker. In: International Conference on Robot Intelligence Technology and Applications, Springer, Singapore, pp.189-198.
  8. Khattak, S., Papachristos, C. and Alexis, K., 2018. Marker based thermal-inertial localization for aerial robots in obscurant filled environments. In: International Symposium on Visual Computing, pp.565-575.
  9. Xu, S., Chou, W. and Dong, H., 2019. A robust indoor localization system integrating visual localization aided by CNN-based image retrieval with Monte Carlo localization. Sensors, 19(2), pp.249.
  10. Yilmaz, A. and Temeltas, H., 2019. Self-adaptive Monte Carlo method for indoor localization of smart AGVs using LIDAR data. Robotics and Autonomous Systems, 122, pp.103285.
  11. Nguyen, Q.V., Colas, F., Vincent, E. and Charpillet, F., 2017. Long-term robot motion planning for active sound source localization with Monte Carlo tree search. In: IEEE Hands-free Speech Communications and Microphone Arrays (HSCMA), pp.61-65.
  12. Akai, N., Hirayama, T. and Murase, H., 2020. Hybrid localization using model-and learning-based methods: Fusion of Monte Carlo and E2E localizations via importance sampling. In: Proceedings of the IEEE International Conference on Robotics and Automation.
  13. Evstigneev, M.I., Litvinov, Yu.V. and Mazulina, V.V., 2019. Lokalizaciya mobil'nogo robota s fil'trom chastic pri obnaruzhenii i segmentaciej ob"ektov [Localization of a mobile robot with a particle filter in the detection and segmentation of objects]. Nauchno-tekhnicheskij vestnik informacionnyh tekhnologij, mekhaniki i optiki [Scientific and technical bulletin of information technologies, mechanics and optics], 19(4). (in Russian).
  14. Shihman, M.V., 2018. Metod Monte-Karlo dlya Lokalizacii Robota na Karte Mestnosti [Monte Carlo Method for Localization a Robot on a Terrain Map]. (in Russian).
  15. Azarchenkov, A.A., Lyubimov, M.S. and Lushkov, V.I., 2017. Lokalizaciya ob"ekta posredstvom svertochnoj nejronnoj seti [Localization of an object by means of a convolutional neural network]. 21 vek: fundamental'naya nauka i tekhnologii [21st century: fundamental science and technology], pp.89-92. (in Russian).
  16. Dingwen, L., u.d. Visualization of Deep Convolutional Neural Networks. Washington University in St Louis Publ., pp.5-11.
  17. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A. and Torralba, A., 2016. Learning deep features for discriminative localization. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp.2921-2929.
  18. Černohorský, J., Jandura, P. and Mach, O., 2017. Mobile robot localization and object description. In: IEEE 18th International Carpathian Control Conference (ICCC), pp.503-506.
  19. Jadidi, M.G., Patel, M., Miro, J.V., Dissanayake, G., Biehl, J. and Girgensohn, A., 2018. A radio-inertial localization and tracking system with BLE beacons prior maps. In: IEEE 2018 International Conference on Indoor Positioning and Indoor Navigation (IPIN), pp.206-212.
  20. Denisov, A.V. et al., 2019. Algoritmy postroeniya setej radiomayakov s yacheistoj topologiej dlya lokalizacii robototekhnicheskih sistem v sel'skom hozyajstve [Algorithms for constructing networks of radio beacons with a mesh topology for the localization of robotic systems in agriculture]. Vestnik MGTU «Stankin», 3(50), pp.57-65. (in Russian).
  21. Denisov, A., Iakovlev, R. and Lebedev, I., 2019. Mathematical and Algorithmic Model for Local Navigation of Mobile Platform and UAV Using Radio Beacons. In: International Conference on Interactive Collaborative Robotics, pp.53-62. DOI: 10.1007/978-3-030-26118-4_6.
  22. Voskresenskij, D.I., Gostyuhin, V.L., Maksimov, V.M. and Ponomarev, L.I., 2008. Antenny i Ustrojstva SVCH [Antennas and Devices with Microwave Frequencies]. (in Russian).
  23. 1991. GOST 23282-91. Reshetki Antennye. Terminy i Opredeleniya [National State Standard 23282-91. Antenna arrays. Terms and Definitions]. Moscow, p.7. (in Russian).
  24. Drabkin, A.L., Zubenko, V.L. and Kislov, A.G., 1974. Antenno-fidernye Ustrojstva [Antenna Feeder Devices]. Sovetskoe Radio Publ. (in Russian).
  25. Vatamanyuk, I.V., Panina, G.YU. and Ronzhin, A.L., 2015. Modelirovanie traektorij peremeshcheniya robototekhnicheskih kompleksov pri rekonfiguracii prostranstvennogo polozheniya roya. Extreme Robotics, 1(1), pp.135-140. (in Russian).
  26. Ronzhin, A., Vatamaniuk, I. and Pavluk, N., 2016. Automatic control of robotic swarm during convex shape generation. In: IEEE International Conference and Exposition on Electrical and Power Engineering (EPE), pp.675-680.
  27. Vatamaniuk, I., Panina, G., Saveliev, A. and Ronzhin, A., 2016. Convex shape generation by robotic swarm. In: IEEE International Conference and Exposition on Electrical and Power Engineering (EPE), pp.300-304.
Editorial office address: 21, Tikhoretsky pr., Saint-Petersburg, Russia, 194064, tel.: +7(812) 552-13-25 e-mail: