Optimization of load modes of bearing assemblies at intensive heat loads

Optimization of load modes of bearing assemblies at intensive heat loads

Konstantin A. Volnyakov *
Russian State Scientific Center for Robotics and Technical Cybernetics (RTC), Engineer, 21, Tikhoretsky pr., Saint-Petersburg, 194064, Russia, tel.: +7(812)552-60-93, This email address is being protected from spambots. You need JavaScript enabled to view it.

Vladislav M. Kopylov
RTC, Engineer, 21, Tikhoretsky pr., Saint-Petersburg, 194064, Russia, tel.: +7(812)552-60-93, This email address is being protected from spambots. You need JavaScript enabled to view it.


Received 27 September 2019 

Abstract
Relatively high thermal resistance combined with significant heat fluxes can lead to significant thermal deformations and changes of radial clearance in the bearing. These changes affect the coefficient of friction and resource [1]. The article considers cases of both an uneven distribution of the temperature field in the bearing and uneven thermal expansion due to the use of materials with unequal thermal expansion coefficients. A method for minimizing the arising loads is proposed, and its effectiveness is determined.

Key words
Rolling bearings, thermal deformation, compensator.

Acknowledgements
The results were obtained in the framework of the PIRO project under the agreement No.665-19 of 07/15/2019.

DOI
https://doi.org/10.31776/RTCJ.8108

Bibliographic description
Volnyakov, K. and Kopylov, V. (2020). Optimization of load modes of bearing assemblies at intensive heat loads. Robotics and Technical Cybernetics, 8(1), pp.72-77.

UDC identifier:
621.822.62

References

  1. Belomytsev, O. (2009). Opredelenie vliyaniya razlichnykh faktorov na zazory (natyagi) i vliyanie natyagov na raspredelenie nagruzki po telam kacheniya v bystrokhodnykh rolikopodshipnikakh. Aviatsionnaya i raketno-kosmicheskaya tekhnika [The determination of various factors influencing on change of the mounting fit and calculation procedure of the load distribution in the cylindrical roller bearings operated in tightness]. Vestnik of Samara University. Aerospace and Mechanical Engineering, 3(19), pp.67-75. (in Russian).
  2. Podshipniki Kacheniya SKF. Katalog-Spravochnik [SKF Antifriction Bearing. Catalogue and Reference Book]. (2017). (in Russian).
  3. Andrienko, L. et al. (2014). Detali Mashin [Machine Elements]. Moscow: MSTU. (in Russian).
  4. Orlov, P. (1988). Osnovy Konstruirovaniya. Spravochno-Metodicheskoe posobie v 3-kh Knigakh. Kniga 1 [Design Principles. Book of Methodics and References in 3 Volumes. Volume 1]. Moscow: Mashinostroenie Publ. (in Russian).
  5. Reshetov, D. (1989). Detali Mashin. Uchebnik dlya Vuzov [Machine Elements. Textbook for Institutes of Higher Education]. Moscow: Mashinostroenie Publ. (in Russian).
  6. Volnyakov, K. (2018). Vliyanie smazochnykh materialov na teploprovodnost' v zone kontakta poverkhnostei [Influence of lubricants in zone of contact of surfaces]. In: Extreme Robotics. (in Russian).
  7. Avraamova, T. et al. (2011). Metallorezhushchie stanki. Uchebnik. T. 1 [Metal-Cutting Machines. Textbook. Vol. 1]. Moscow: Mashinostroenie Publ. (in Russian).
  8. Basinyuk, V. et al. (2011). Osobennosti konstruirovaniya i primeneniya avtomatizirovannykh elektroprivodov pryamogo deistviya v sostave tekhniki dlya ekstremal'nykh uslovii [Design features and applications of direct automatic electric drive units operating in extreme temperature conditions]. News of the Tula state university. Technical sciences, 5(2), pp.106-117. (in Russian).
Editorial office address: 21, Tikhoretsky pr., Saint-Petersburg, Russia, 194064, tel.: +7(812) 552-13-25 e-mail: zheleznyakov@rtc.ru