Conceptual tasks of security ensuring of the «smart city», saturated with robots with artificial intelligence

Conceptual tasks of security ensuring of the «smart city», saturated with robots with artificial intelligence

Victor G. Usychenko
Doctor of Physical and Mathematical Sciences, Federal State Unitary Enterprise «State Research Institute of Applied Problems», Senior Research Scientist, 29, naberezhnaya Obvodnogo kanala, Saint-Petersburg, 191167, Russia, tel.: +7(960)261-34-79, This email address is being protected from spambots. You need JavaScript enabled to view it.

Leonid N. Sorokin *
Doctor of Technical Science, Federal State Unitary Enterprise «State Research Institute of Applied Problems», Leading Research Scientist, 29, naberezhnaya Obvodnogo kanala, Saint-Petersburg, 191167, Russia, tel.: +7(911)963-76-09, This email address is being protected from spambots. You need JavaScript enabled to view it.

Raphael M. Yusupov
Doctor of Technical Science, Federal State Budgetary Institution of Science Saint-Petersburg Institute for Informatics and Automation of the Russian Academy of Sciences (SPIIRAS), Professor, Corresponding Member of the Russian Academy of Sciences, Honored Scientist of the Russian Federation, winner of the RF Government Prize, Research Advisor, 39, 14 line V.O., Saint-Petersburg, 199178, Russia, tel.: +7(921)949-79-69, This email address is being protected from spambots. You need JavaScript enabled to view it.


Received 17 January 2020 

Abstract
The widespread use of robots controlled by artificial intelligence is bound with potential risks. For remote counteraction against robots that can pose a threat to people in urban conditions, it is proposed to use directional radiators of electromagnetic pulses optimized in parameters. The prospects and main tasks requiring a comprehensive solution are discussed.

Key words
Robot, artificial Intelligence, unmanned vehicles, digital microcircuits, electromagnetic impacts.

Acknowledgements
The study was funded by RFBR in frames of project no.19-29-06010.

DOI
https://doi.org/10.31776/RTCJ.8103

Bibliographic description
Usychenko, V., Sorokin, L. and Yusupov, R. (2020). Conceptual tasks of security ensuring of the «smart city», saturated with robots with artificial intelligence. Robotics and Technical Cybernetics, 8(1), pp.24-33.

UDC identifier:
896:537.86:621.382

References

  1. Government of the Russian Federation. (2017). Programma «Tsifrovaya ekonomika Rossiyskoy Federatsii». Utverzhdena rasporyazheniyem Pravitel'stva Rossiyskoy Federatsii №1632-r ot 28 iyulya 2017 g. [Program «Digital Economy of the Russian Federation». Approved by order of the Government of the Russian Federation No. 1632-r dated July 28, 2017] [оnline] Available at: http://static.government.ru/media/files/9gFM4FHj4PsB79I5v7yLVuPgu4bvR7M0.pdf [Accessed 1 Nov. 2019]. (in Russian).
  2. Government of the Russian Federation. (2018). Postanovleniye Pravitel'stva RF ot 26.11.2018 №1415 «O provedenii eksperimentov po opytnoy ekspluata-tsii na dorogakh obshchego pol'zovaniya vysokoavtomatizirovannykh transportnykh sredstv» [Decree of the Government of the Russian Federation of November 26, 2018 No. 1415 “On conducting experiments on the pilot operation of highly automated vehicles on public roads”] [оnline] Available at: http://static.government.ru/media/files/Obo8MsELLPAARJr3Xiq10rnW8IxLea7Lh.pdf [Accessed 30 Mar. 2019]. (in Russian).
  3. RFBR.ru (2019). Resheniye byuro Soveta RFFI. Protokol zasedaniya № 4(216) ot 17.04.2019g [Decision of the Bureau of the RFBR Council. A protocol of a meeting No. 4(216) of 04/17/2019] [оnline] Available at: http://https://www.rfbr.ru/rffi/ru/contest/n_812/o_2086697 [Accessed 30 Apr. 2019]. (in Russian).
  4. Potapov, A.S. (2010). Tekhnologii iskusstvennogo intellekta [Artificial intelligence technologies]. St. Petersburg: SPbGU ITMO Publ., 218 p. (in Russian).
  5. HABR (2019). Alizar A. Neyroset' AlphaStar obygrala professionalov StarCraft II so schotom 10:1. [Neural network AlphaStar beat StarCraft II professionals with a score of 10: 1.] [оnline] Available at: https://habr.com/ru/post/437538/ [Accessed 25 May 2019]. (in Russian).
  6. DEITA (2018). Grach M. Iskusstvennyy intellekt vyshel iz-pod kontrolya [Artificial Intelligence Gets Out of Control]. [оnline] Available at: http://deita.ru/ru/news/iskusstvennyj-intellekt-vyshel-iz-pod-kontrolya/ [Accessed 12 Dec. 2018]. (in Russian).
  7. Demchenko, N. and Litova, E. (2019). Gref priznal poteryu milliardov rubley iz-za iskusstvennogo intellekta [Gref admits loss of billions of rubles due to artificial intelligence]. [оnline] Available at: https://www.rbc.ru/finances/26/02/2019/5c74f4839a7947501397823f [Accessed 2 Mar. 2019]. (in Russian).
  8. Vedomosti (2018). Prichinoy krusheniya Boeing 737 v Indonezii mogla stat' avtomatika [The reason for the crash of the Boeing 737 in Indonesia could be automation]. [оnline] Available at: https://www.vedomosti.ru/business/articles/2018/11/13/786339-boeing [Accessed 1 Nov. 2019]. (in Russian).
  9. BBC NEWs (2019). Krusheniye «Boinga» v Efiopii: sistema avtomaticheski opustila nos pered padeniyem. [Ethiopian Boeing crash: system automatically lowers nose before crash]. [оnline] Available at: https://www.bbc.com/russian/news-47745048 [Accessed 1 Nov. 2019]. (in Russian).
  10. Besekersky, V. and Popov, E. (2003). Teoriya sistem avtomaticheskogo upravleniya [Theory of Automatic Control Systems]. St. Petersburg: «Professiya» Publ., 752 p. (in Russian).
  11. Yurevich, E. (2017). Teoriya avtomaticheskogo upravleniya. [Theory of Automatic Control]. 4ed., St. Petersburg: «BHV» Publ., 551 p. (in Russian).
  12. INTERFAX (2019). Saudovskaya Araviya nazvala prichiny vzryvov na svoikh NPZ. [Saudi Arabia named the reasons for the explosions at its refineries]. [оnline] Available at: https://www.interfax.ru/world/676457 [Accessed 31 Oct. 2019]. (in Russian).
  13. Balyuk, N., Kechiev, L. and Stepanov, P. (2007). Moshchnyy elektromagnitnyy impul's: vozdeystviye na elektronnyye sredstva i metody zashchity. [Powerful electromagnetic pulse: impact on electronic means and methods of protection]. Moscow: OOO «Gruppa IDT» Publ., 478 p. (in Russian).
  14. Belokon', I., Goncharov, A., Ivanov, Ye. and Kudryashov, A. (2010). Analiz tekhnologiy generatsii moshchnogo impul'snogo radiochastotnogo izlucheniya i perspektivy ikh razvitiya [Analysis of technologies for generating powerful pulsed radio frequency radiation and their development prospects]. Tekhnologii EMS - EMC technology, 1, pp. 49-57. (in Russian).
  15. Mesyats, G. and Yalandin, M. (2005). Pikosekundnaya elektronika bol'shikh moshchnostey [High power picosecond electronics]. Uspekhi fizicheskikh nauk – Advances in Physical Sciences, 175(3), pp. 225-246. (in Russian).
  16. Sakharov, K. (2006). Izluchateli sverkhkorotkikh elektromagnitnykh impul'sov i metody izmereniy ikh parametrov [Ultrashort electromagnetic pulse radiators and methods for measuring their parameters]. Moscow: Moscow Institute of Electronics and Mathematics (MIEM HSE) Publ., 160 p. (in Russian).
  17. Fidtechnology (u.d.). FID GmbH Company. [оnline] Available at: http://www.fidtechnology.com/products.html [Accessed 29 Dec. 2019].
  18. Efanov, V., Efanov, M., Komashko, A., Kriklenko, A., Yarin, P. and Zazoulin, S. (2010). High-Voltage and High-PRF FID Pulse Generators. In: Ultra-Wideband, Short-Pulse Electromagnetics 9 / eds F. Sabath et al. New York: Springer, pp. 301–306.
  19. Radasky, W. (2010). Protection of Commercial Installations from the High-Frequency Electromagnetic Threats of HEMP and IEMI using IEC Standards. In: Asia-Pacific Symposium on Electromagnetic Compatibility (APEMC), pp. 758–761.
  20. GOST R 52863-2007. (2008). Zashchita informatsii. Avtomatizirovannyye sistemy v zashchishchonnom ispolnenii. Ispytaniya na ustoychivost' k prednamerennym silovym elektromagnitnym vozdeystviyam. Obshchiye trebovaniya [Protection of information. Automated systems in a secure design. Tests for resistance to premediated force electromagnetic impacts. General requirements.]. Moscow: Standartinform Publ., 38 p. (in Russian).
  21. Backstrom, M. (1999). HPM testing of a car: A representative example of the susceptibility of civil systems In: Supplement to Proc. of the 13th Int. Zurich Symp. on EMC. Zurich, Switzerland, pp. 189–190.
  22. Hoad, R., Carter, N., Herke, D. and Watkins, S. (2004). Trends in EM Susceptibility of IT Equipment. IEEE Transactions on Electromagnetic Compatibility, 46(3), pp. 390-395.
  23. Akbashev, B., Aleshko, A., Galich, Yu., Zdorenko, O., Mikheyev, O., Ol'shevskiy, A., Turkin, V., Sakharov, K. and Semin, V. (2012). Rezul'taty eksperimental'nykh issledovaniy sistem videonablyudeniya v usloviyakh vozdeystviya moshchnykh elektromagnitnykh poley [The results of experimental studies of video surveillance systems under the influence of powerful electromagnetic fields]. Tekhnologii EMS - EMC technology, 1(24), pp. 22-26. (in Russian).
  24. Mikheev, V., Rakhmanov, I., Utkin, A., Zhuravlev, N., Sakharov, K. and Sukhov, A. (2013). Eksperimental'nyye issledovaniya funktsionirovaniya ustroystv RFID v usloviyakh vozdeystviya sverkhkorotkikh elektromagnitnykh poley [Experimental studies of the operation of RFID devices under the influence of ultrashort electromagnetic fields]. Tekhnologii EMS - EMC technology, 4(47), pp. 30-35. (in Russian).
  25. Zhijun, Q., Xuchao, P., Yong, H., Hong, C., Jie, S. and Cheng, Y. (2017). Damage of high power electromagnetic pulse to unmanned aerial vehicles. High Power Laser and Particle Beams, 29(11).
  26. Sakharov, K., Sukhov, A., Ugolev, V. and Gurevich, Y. (2018). Study of UWB Electromagnetic Pulse Impact Commercial Unmanned Aerial Vehicle. In: Proc. 2018 Int. Symp. On EMC (EMC Europe 2018). Amsterdam, pp. 40-43.
  27. Sakharov, K., Turkin, V. and Sukhov, A. (2018). Ispytaniya bespilotnogo letatel'nogo apparata na ustoychivost' k vozdeystviyu sverkhkorotkikh elektromag-nitnykh impul'sov [Tests of unmanned aerial vehicle for resistance to ultrashort electromagnetic pulses]. In: Sbornik dokladov VII Vserossiyskaya nauchno-tekhnicheskaya konferentsiya «Elektromagnitnaya sovmestimost'» [The collection of reports VII All-Russian Scientific and Technical Conference «Electromagnetic Compatibility»]. Moscow: АО «TESTPRIBOR» Publ., pp. 31-37. (in Russian).
  28. Usychenko, V. and Sorokin, L. (2017). Stoykost' sverkhvysokochastotnykh radiopriyemnykh ustroystv k elektromagnitnym vozdeystviyam [The hardness of a microwave radio receivers against electromagnetic impacts]. Moscow: Radiotekhnika Publ., 288p. (in Russian).
  29. Berdyshev, A., Ivoylov, V., Isaykin, A., Koziratsky, Yu., Scherenkov, V. and Yarygin, A. (2000). Eksperimental'nyye issledovaniya vozdeystviya SVCH-impul'sov na soderzhashchiye integral'nyye mikroskhemy radioelektronnyye ustroystva [Experimental studies of the effects of microwave pulses on radio electronic devices containing integrated microcircuits]. Radiotekhnika – Radio engineering, 8, pp. 85-88. (in Russian).
  30. Klyuchnik, A., Pirogov, Yu. and Solodov, A. (2011). Issledovaniye stoykosti integral'nykh mikroskhem v elektromagnitnykh polyakh impul'snogo radioizlucheniya [The study of the hardness of integrated microcircuits in the electromagnetic fields of pulsed radio emission]. Radiotekhnika i elektronika – Radio engineering and Electronics, 56(3), pp. 1-5. (in Russian).
  31. Camp, M., Garbe, H. and Sabath, F. (2005). Coupling of Transient Ultra Wide Band Electromagnetic Fields to Complex Electronic Systems. In: Proseeding of the IEEE International Symposium in Electromagnetic Compatibility. Chicago, USA, pp. 483-488.
  32. Camp, M., Gerth, H., Garbe, H. and Haas, H. (2004). Predicting the Breakdown Behavior of Microcontrollers Under EMP/UWB Impact Using a Statistical Analysis. IEEE Transaction on Electromagnetic Compatibility, 46(3), pp. 368-379.
  33. Nisch, D., Camp, M., Sabath, F., Haseborg, J. and Garber, H. (2004). Susceptibility of Some Electronic Equipment to HPEM Threats. IEEE Transaction on Electromagnetic Compatibility, 46(3), pp. 380-389.
  34. Ostashev, V., Ulyanov, A. and Fedorov, V. (2006). Predel'nyye vozmozhnosti generirovaniya videoimpul'sov izlucheniya s ispol'zovaniyem moshchnykh poluprovod-nikovykh generatorov vozbuzhdeniya [Marginal possibilities of generating video pulses of radiation using powerful semiconductor excitation generators]. In: Trudy 9-y Vserossiyskoy nauchno-prakticheskoy konf. «Aktual'nyye problemy zashchity i bezopasnosti» [Proceedings of the 9th All-Russian Scientific and Practical Conf. «Actual problems of protection and security»]. St. Petersburg: NPO Spets. Materialov Publ., pp. 329-336. (in Russian).
  35. Segene, A. (2014). O sozdanii i praktike primeneniya formirovateley impul'snykh elektromagnitnykh poley [About the creation and application practice of shapers of pulsed electromagnetic fields]. Prikladnyye problemy bezopasnosti tekhnicheskikh i biotekhnicheskikh sistem – Applied Problems of Safety of Technical and Biotechnical Systems, 1-2, pp. 97-108. (in Russian).
  36. Sakharov, K., Turkin, V., Mikheev, O. and Sukhov, A. (2019). Sredstva ispytaniy transportnykh bespilotnykh sistem k vozdeystviyu prednamerennykh impul'snykh elek-tromagnitnykh izlucheniy [Testing means of transport unmanned systems to the effects of intentional pulsed electromagnetic radiation]. In: Sbornik dokladov VIII Vserossiyskaya nauchno-tekhnicheskaya konferentsiya «Elektromagnitnaya sovmestimost'» [The collection of reports VIII All-Russian Scientific and Technical Conference «Electromagnetic Compatibility»]. Moscow: АО «TESTPRIBOR» Publ., pp. 91-97. (in Russian).
  37. SanPiN 2.2.4/2.1.8.055-96. (2002). Sanitarnyye pravila i normy. Elektromagnitnyye polya radiochastotnogo diapazona [Sanitary rules and regulations. Radio frequency electromagnetic fields]. Moscow: Goskomepidemnadzor Rossii Publ., 30 p. (in Russian).
Editorial office address: 21, Tikhoretsky pr., Saint-Petersburg, Russia, 194064, tel.: +7(812) 552-13-25 e-mail: zheleznyakov@rtc.ru