Design features of the robotic complex for in-line pipeline diagnostics

Design features of the robotic complex for in-line pipeline diagnostics

Vladislav A. Volkov
Russian State Scientific Center for Robotics and Technical Cybernetics (RTC), Designer, 21, Tikhoretsky pr., Saint Petersburg, 194064, Russia, This email address is being protected from spambots. You need JavaScript enabled to view it.

Viktor V. Varlashin
RTC, Junior Research Scientist, 21, Tikhoretsky pr., Saint Petersburg, 194064, Russia, This email address is being protected from spambots. You need JavaScript enabled to view it.


Received October 18, 2022

Abstract
The article considers the controlled parameters of the state of the pipeline during in-line technical diagnostics. Comparisons of various complexes - in-line inspection devices are given and a comparative table is built on their basis. In the final part, brief conclusions are given on the differences of in-line inspection devices, and a comparison of the considered complexes with an in-pipe robotic diagnostic complex, developed taking into account the analysis of the considered complexes, is made.

Key words
In-line pipeline diagnostics, pipeline condition monitoring, robotic complex.

Acknowledgements
The work was carried out within the framework of R&D carried out by the Central Research Institute of the RTK in the implementation of a comprehensive project to create a high-tech production «Development of a robotic diagnostic complex for in-line inspection of pipelines» with financial support from the Ministry of Science and Higher Education of the Russian Federation; subsidy agreement No. 075-11-2022-035.

DOI
10.31776/RTCJ.10410

Bibliographic description
Volkov, V.A. and Varlashin, V.V. (2022). Design features of the robotic complex for in-line pipeline diagnostics. Robotics and Technical Cybernetics, 10(4), pp.309-320.

UDC identifier:
007.52:628.143

References 

  1. Ma, Q. et al. (2021). Pipeline in-line inspection method, instrumentation and data management. Sensors, [online], vol. 21. no. 11, 3862. DOI: 10.3390/s21113862.
  2. Song, H. et al. (2018). Comparative analysis of in-line inspection equipments and technologies In: IOP Conference Series: Materials Science and Engineering, 382(3), 032021. DOI: 10.1088/1757-899X/382/3/032021.
  3. Alekhin, S.G. (2013). Thickness measurement of metal structures based on electromagnetic-acoustic transformation in a pulsed magnetic field. Abstract of Ph.D. dissertation, Research Institute of Introscopy MNPO "SPEKTR", Moscow. (in Russian).
  4. Camerini, C. et al. (2018). In-line inspection tool with eddy current instrumentation for fatigue crack detection. Sensors, [online], vol. 18, no. 7, 2161. DOI: 10.3390/s18072161.
  5. Amal Alex and Rajesh Kannan Megalingam, 2022. Pipe line inspection robot. iJRASET, [online], vol. 10, no. VII, pp.766-772. DOI: 10.22214/ijraset.2022.45392.
  6. D. Williamson, (2022). XYZ Mapping, [online]. Available at: https://www.tdwilliamson.com/solutions/pipeline-integrity/in-line-lnspection/xyz-mapping (Accessed 10 October 2022).
  7. Rosen, (2022). ROCORR IEC SERVICE. In-line high-resolution detection and sizing of internal metal loss, [online]. Available at: https://www.rosen-group.com/dms/rosen-website/rosen-documents/solutions/services/rocorr-iec/ROSEN-Group_RoCorr-IEC-service_Jahr-2022/RoCorr%20IEC.pdf (Accessed 14 October 2022).
  8. Rosen, (2022). ROGEO XT SERVICE. In-line high-resolution geometry and dent analysis, [online]. Available at: https://www.rosen-group.com/dms/rosen-website/rosen-documents/solutions/services/rogeo-xt/ROSEN-Group_RoGeo-XT/RoGeo%20XT.pdf (Accessed 14 October 2022).
  9. Transneft Diascan, JSC, (2022). Multichannel Profilers PRN, [online]. Available at: https://diascan.transneft.ru/
    u/section_file/239863/01_mnogokanalnie_profilemeri_prn-40-56_1200h676.jpg (Accessed 14 October 2022). (in Russian).
  10. Transneft Diascan, JSC, (2022). In-line devices for determining the position of pipelines (OPT), [online]. Available at: https://diascan.transneft.ru/u/section_file/239864/02_defektoskopi_dlya_opredeleniya_polojeniya_
    jpg (Accessed 14 October 2022). (in Russian).
  11. Pipecare, (2022). Magnetic Flux Leakage (MFL) Inspection, [online]. Available at: https://www.pipecaregroup.com/mfl-inspection/ (Accessed 14 October 2022).
  12. Pipecare, (2022). Transverse Fiald Inspection (TFI), [online]. Available at: https://www.pipecaregroup.com/tfi-inspection/ (Accessed 14 October 2022).
  13. Transneft Diascan, JSC, (2022). Magnetic Flaw Detectors MSK Series (MFL), [online]. Available at: https://diascan.transneft.ru/u/section_file/239866/04_magnitnie_defektoskopi_serii_msk_mfl__2100x672.jpg (Accessed 14 October 2022). (in Russian).
  14. Transneft Diascan, JSC, (2022). Magnetic Flaw Detectors MSK series (TFI), [online]. Available at: https://diascan.transneft.ru/u/section_file/239867/05_magnitnie_defektoskopi_serii_msk_tfi__1200x672.jpg (Accessed 14 October 2022). (in Russian).
  15. Transneft Diascan, JSC, (2022). Combined Magnetic Flaw Detectors (MFL+TFI), [online]. Available at: https://diascan.transneft.ru/u/section_file/248021/06_kombinirovannie_magnitnie_mfl_tfi__1200x675.jpg (Accessed 14 October 2022). (in Russian).
  16. Pipecare, (2022). Ultrasonic Metal Loss Inspection (UT), [online]. Available at: https://www.pipecaregroup.com/ultrasonic-inspection/ (Accessed 14 October 2022).
  17. Transneft Diascan, JSC, (2022). Ultrasonic Flaw Detector for Multi-Angle Examination of the pipeline Wall, [online]. Available at: https://diascan.transneft.ru/u/section_file/248031/08_defektoskopi_dlya_mnogorakyrsnogo_
    jpg (Accessed 14 October 2022). (in Russian).
  18. Transneft Diascan, JSC, (2022). Combined Magnetic-Ultrasonic Flaw Detectors (MFL+WM+CD), [online]. Available at: https://diascan.transneft.ru/u/section_file/239869/07_kombinirovannie_magnitno-yltrazvykovie_defektoskopi_mfl_wm_cd__1200x673.jpg (Accessed 14 October 2022). (in Russian).
  19. Pipecare, (2022). Electromagnetic Acoustic Transducer (EMAT): Pipeline Inspection, [online]. Available at: https://www.pipecaregroup.com/emat-inspection/ (Accessed 14 October 2022).
  20. Rosen, (2022). RoDD EMAT. Service In-Line High Resolution Coating Disbondment Analysis. Available at: https://www.rosen-group.com/dms/rosen-website/rosen-documents/solutions/services/rodd-emat/ROSEN-GROUP_RODD-EMAT-SERVICE/RoDD_EMAT_SF_E_201405.pdf (Accessed 14 October 2022).
  21. Transneft Diascan, JSC, (2022). Flaw Detector for Detecting Delamination of the Insulating Coating of Pipelines of the ODP Series, [online]. Available at: https://diascan.transneft.ru/u/section_file/248181/09_defektoskop_
    pokritiya_1200h675.jpg (Accessed 14 October 2022). (in Russian).
  22. D. Williamson, (2022). Multiple Datasets (MDS), [online]. Available at: https://www.tdwilliamson.com/
    solutions/pipeline-integrity/inline-inspection/mds (Accessed 14 October 2022).
  23. D. Williamson, (2022). SpirALL Magnetic Flux Leakage (SMFL), [online]. Available at: https://www.tdwilliamson.com/solutions/pipeline-integrity/inline-inspection/smfl (Accessed 14 October 2022).
  24. D. Williamson, (2022). Deformation (DEF), [online]. Available at: https://www.tdwilliamson.com/solutions/pipeline-integrity/in-line-lnspection/def (Accessed 14 October 2022).
  25. D. Williamson, (2022). Low Field Magnetic Flux Leakage (LFM), [online]. Available at: https://www.tdwilliamson.com/solutions/pipeline-integrity/inline-inspection/lfm (Accessed 14 October 2022).
  26. Dropbox, (2022). SIGMA HD-LR, [online]. Available at: https://www.dropbox.com/sh/6tccey3dicpyw2b/AABt1nXSUjv_q-I_hP9Mqmr0a?dl=0&preview=SIGMA+HD-LR+Pipe+
    pdf (Accessed 14 October 2022).
  27. Dropbox, (2022). Crawler Pipeline Inspection System, [online]. Available at: https://www.dropbox.com/sh/6tccey3dicpyw2b/AABt1nXSUjv_q-I_hP9Mqmr0a?dl=0&preview=SIGMA+HD+Pipe+
    Crawler.pdf (Accessed 14 October 2022).
  28. Dropbox, (2022). Pipe Crawler STORMER S3000, [online]. Available at: https://www.dropbox.com/sh/
    6tccey3dicpyw2b/AABt1nXSUjv_q-I_hP9Mqmr0a?dl=0&preview=STORMER+S3000+Pipe+Crawler.pdf (Accessed 14 October 2022).
  29. Forbest, (2022). Crawler System, [online]. Available at: https://en.forbest-online.com/fahrwagen-system (Accessed 14 October 2022).
  30. Nexxis, (2022). Crab-Robot. Technical Specifications, [online]. Available at: https://nexxis.com/wp-content/uploads/sites/3/2017/02/Datasheets-Crab-Robot-2019.pdf (Accessed 14 October 2022).
  31. Jettyrobot, (2022). Technology, [online]. Available at: https://www.jettyrobot.com/technology/ (Accessed 14 October 2022).
  32. Nexxis, (2022). RMIS MAXI (16x16), [online]. Available at: https://nexxis.com/product/rmis-maxi-16x16/ (Accessed 14 October 2022).
  33. SYNTHOTECH, (2022). STASS, [online]. Available at: https://synthotech.com/wp-content/uploads/2021/07/
    pdf (Accessed 14 October 2022).
  34. SYNTHOTECH, (2022). GRAID, [online]. Available at: https://synthotech.com/wp-content/uploads/2021/07/
    GRAID-Brochure.pdf (Accessed 14 October 2022).
  35. Diakont, (2022). Oil and Gas Industry, [online]. Available at: https://www.diakont.ru/energy_services/16/n-a.html (Accessed 14 October 2022). (in Russian).