Space Robotics. Part I

Space Robotics. Part I

Boris A. Spassky
PhD in Technical Sciences, Russian State Scientific Center for Robotics and Technical Cybernetics (RTC), Head of Section, 21, Tikhoretsky pr., Saint-Petersburg, 194064, Russia, tel.: +7(812)552-13-25, This email address is being protected from spambots. You need JavaScript enabled to view it.


Received 30 July 2018

Abstract
The actual problems of space exploration and exploration of the solar system physical bodies are considered. Solution of these problems requires the extensive use of space robots of different purpose. The key technologies required for the implementation of space missions using space robots and manipulators are described. Examples of completed, ongoing and planned space missions are given. It is shown that it is possible to reduce the cost and to speed up the process of space robotics development through a modular approach to the design of such systems, which allows to realize mass production of reconfigurable multifunctional samples that are easily adaptable to changing mission tasks, reduce the time required for their development, and therefore the cost of their manufacture. To do this, it is necessary to focus on the development of unified hardware and software modules that will become the basis for building such robots.

Key words
Space robot, autonomous robot, reconfigurable robot, multifunctional robot, in-orbit spacecraft repair and maintenance, modular approach to design.

DOI
https://doi.org/10.31776/RTCJ.6401 

Bibliographic description
Spassky, B. (2018). Space Robotics. Part I. Robotics and Technical Cybernetics, 4(21), pp.5-13.

UDC identifier:
629.78:007.52

References

  1. Goddard Space Flight Center. (2010). On-Orbit Satellite Servicing Study. Project Report. National Aeronautics and Space Administration, Goddard Space Flight Center. [online] Available at: http://servicingstudy.gsfc.nasa.gov/ [Accessed 5 Jul. 2018].
  2. Vinogradov, P., Zheleznyakov, A. and Spassky, B. (2015). Modern directions of space robotics development. Robotics and Technical Cybernetics, 4(9), pp.3-12.
  3. NPO im. S.A. Lavochkina. (n.d.). Planetnye issledovaniya [Planet researches]. [online] Available at: https://www.laspace.ru/projects/planets/ [Accessed 25 Jul. 2018].
  4. Canadian Space Agency website. (2018). Canadarm. [online] Available at: http://www.asc-csa.gc.ca/eng/canadarm/default.asp [Accessed 25 Jul. 2018].
  5. Canadian Space Agency. (2018). Canadarm2, the Canadian robotic arm on the Space Station. [online] Available at: http://asc-csa.gc.ca/eng/iss/canadarm2/default.asp [Accessed 25 Jul. 2018].
  6. Canadian Space Agency. (2018). About Dextre. [online] Available at: http://www.asc-csa.gc.ca/eng/iss/dextre/about.asp [Accessed 25 Jul. 2018].
  7. NASA's InSight Mars Lander. (n.d.). InSight Mission Overview. [online] Available at: https://mars.nasa.gov/insight/mission/overview/ [Accessed 6 Jun. 2018].
  8. Hayabusa2.jaxa.jp. (n.d.). JAXA Hayabusa2 Project. [online] Available at: http://www.hayabusa2.jaxa.jp/en/ [Accessed 3 Oct. 2018].
  9. DLR Portal. (2018). Three hops in three asteroid days – MASCOT successfully completes the exploration of the surface of asteroid Ryugu. [online] Available at: https://www.dlr.de/dlr/en/desktopdefault.aspx/tabid-10081/151_read-30138/year-all/#/gallery/32253 [Accessed 8 Oct. 2018].
  10. ESA. (2014). Phobos Moon of Mars Sample Return Mission. Phobos SR CDF Study Report: CDF-145(A). [online] Available at: https://en.wikipedia.org/wiki/Concurrent_Design_Facility [Accessed 24 Jul. 2018].
  11. Nssdc.gsfc.nasa.gov. (n.d.). The Apollo Lunar Roving Vehicle. [online] Available at: https://nssdc.gsfc.nasa.gov/planetary/lunar/apollo_lrv.html [Accessed 23 Jul. 2018].
  12. NASA Space Science Data Coordinated Archive. (n.d.). Mars Pathfinder Rover. [online] Available at: https://nssdc.gsfc.nasa.gov/nmc/spacecraftDisplay.do?id=MESURPR [Accessed 19 Jul. 2018].
  13. NASA Space Science Data Coordinated Archive. (n.d.). Spirit. [online] Available at: https://nssdc.gsfc.nasa.gov/nmc/spacecraftDisplay.do?id=2003-027A [Accessed 19 Jul. 2018].
  14. NASA Space Science Data Coordinated Archive. (n.d.). Opportunity. [online] Available at: https://nssdc.gsfc.nasa.gov/nmc/spacecraftDisplay.do?id=2003-032A [Accessed 19 Jul. 2018].
  15. NASA Space Science Data Coordinated Archive. (n.d.). Curiosity. [online] Available at: https://nssdc.gsfc.nasa.gov/nmc/spacecraftDisplay.do?id=2011-070A [Accessed 20 Jul. 2018].
  16. JPL, N. (n.d.). Rover - Mars Science Laboratory. [online] Jet Propulsion Laboratory. Available at: https://mars.nasa.gov/msl/mission/rover/ [Accessed 20 Jul. 2018].
  17. ESA. (2016). ESA - Robotic Exploration of Mars: ExoMars Mission (2020). [online] Available at: http://exploration.esa.int/mars/48088-mission-overview [Accessed 21 Jul. 2018].
  18. RIA Novosti. (2018). Rossijsko-evropejskuju missiju po izucheniju Marsa hotjat zapustit' v 2020 godu [Russian-European mission for Mars exploration will be launched in 2020]. [online] Available at: https://ria.ru/science/20180512/1520424018.html [Accessed 21 Jul. 2018].
  19. Exploration.esa.int. (2015). ESA - Robotic Exploration of Mars: ExoMars Rover. [online] Available at: http://exploration.esa.int/mars/45084-exomars-rover/ [Accessed 21 Jul. 2018].
  20. NASA/JPL. (2018). Mars Helicopter to Fly on NASA's Next Red Planet Rover Mission. [online] Available at: https://www.jpl.nasa.gov/news/news.php?feature=7121 [Accessed 21 Jul. 2018].
  21. NASA Office of Inspector General. (2017). NASA'S Mars 2020 Project. Report No. IG-17-009. [online] Available at: https://oig.nasa.gov/docs/IG-17-009.pdf [Accessed 24 Jul. 2018].
  22. European Space Agency. (2018). Mars sample return. [online] Available at: https://www.esa.int/Our_Activities/Human_Spaceflight/Exploration/Mars_sample_return [Accessed 21 Jul. 2018].
Editorial office address: 21, Tikhoretsky pr., Saint-Petersburg, Russia, 194064, tel.: +7(812) 552-13-25 e-mail: zheleznyakov@rtc.ru