STUDY OF UNDERWATER VEHICLE THRUSTER DYNAMICS

STUDY OF UNDERWATER VEHICLE THRUSTER DYNAMICS

S.I. Antonenko
Russian State Scientific Center for Robotics and Technical Cybernetics (RTC), Engineer, 21, Tikhoretsky pr., Saint-Petersburg, 194064, Russia, tel.: +7(812)552-15-08, This email address is being protected from spambots. You need JavaScript enabled to view it.

V.P. Makarychev
PhD in Technical Sciences, RTC, Senior Research Scientist, 21, Tikhoretsky pr., Saint-Petersburg, 194064, Russia, tel.: +7(812)552-15-08, This email address is being protected from spambots. You need JavaScript enabled to view it.


Received 29 October 2017

Abstract
The problem of control of autonomous underwater vehicle (AUV) with considering its thrusters dynamics is addressed. The features of the AUV movement control and the dynamic behavior of the underwater vehicle are considered. The Simulink model of the AUV taking into account the dynamics of its thrusters is suggested.

Key words
Autonomous underwater vehicle, Euler equations, dynamics of submersible thrusters.

Bibliographic description
Antonenko, S. and Makarychev, V. (2018). Study of underwater vehicle thruster dynamics. Robotics and Technical Cybernetics, 1(18), pp.61-68.

UDC identifier:
629.584

References

  1. Fossen, T. (1994). Guidance and control of ocean vehicles. Chichester, U.K.: J. Wiley & Sons.
  2. Yuh, J. (1990). Modeling and control of underwater robotic vehicles. IEEE Transactions on Systems, Man, and Cybernetics, 20(6), pp.1475-1483.
  3. Choi, S. and Yuh, J. (1996). Experimental study on a learning control system with bound estimation for underwater robots. Proceedings of IEEE International Conference on Robotics and Automation, Minneapolis, MN, USA.
  4. Nie, J., Yuh, J., Kardash, E. and Inge Fossen, T. (1998). On-Board Sensor-Based Adaptive Control of Small UUVS in Very Shallow Water. IFAC Conf. Contr. Applicat. Marine Syst., Fukuoka, J, 31(30), pp.191-196.
  5. Roberson, R. and Schwertassek, R. (1988). Dynamics of Multibody Systems. Berlin, Germany: Springer-Verlag.
  6. Valavanis, K., Gracanin, D., Matijasevic, M., Kolluru, R. and Demetriou, G. (1997). Control architectures for autonomous underwater vehicles. IEEE Control Systems, 17(6), pp.48-64.
  7. Antonelli, G., Caccavale, F., Chiaverini, S. and Villani, L. (1998). An output feedback algorithm for position and attitude tracking control of underwater vehicles. Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171), pp.4567-4572.
  8. Oliveira, P., Pascoal, A., Silva, V. and Silvestre, C. (1996). Design, development, and testing at sea of the mission control system for the MARIUS autonomous underwater vehicle. OCEANS 96 MTS/IEEE Conference Proceedings. The Coastal Ocean - Prospects for the 21st Century, 1, pp.401-406.
  9. Coste-Maniere, E., Wang, H., Rock, S., Peuch, A., Perrier, M., Rigaud, V. and Lee, M. (1996). Joint evaluation of mission programming for underwater robots. Proceedings of IEEE International Conference on Robotics and Automation, pp.2492-2497.
  10. Choi, S. and Yuh, J. (1996). Experimental study on a learning control system with bound estimation for underwater robots. Autonomous Robots, 3(2-3), pp.187-194.
  11. Corradini, M. and Orlando, G. (1997). A discrete adaptive variable-structure controller for MIMO systems, and its application to an underwater ROV. IEEE Transactions on Control Systems Technology, 5(3), pp.349-359.
  12. Conte, G. and Serrani, A. (1998). Global robust tracking with disturbance attenuation for unmanned underwater vehicles. Proceedings of the 1998 IEEE International Conference on Control Applications (Cat. No.98CH36104), pp.1094-1098.
  13. Cristi, R., Papoulias, F. and Healey, A. (1990). Adaptive sliding mode control of autonomous underwater vehicles in the dive plane. IEEE Journal of Oceanic Engineering, 15(3), pp.152-160.
  14. Healey, A. and Lienard, D. (1993). Multivariable sliding mode control for autonomous diving and steering of unmanned underwater vehicles. IEEE Journal of Oceanic Engineering, 18(3), pp.327-339.
  15. Yoerger, D. and Slotine, J. (1985). Robust trajectory control of underwater vehicles. IEEE Journal of Oceanic Engineering, 10(4), pp.462-470.
  16. Yoerger, D. and Slotine, J. (1991). Adaptive sliding control of an experimental underwater vehicle. Proceedings. 1991 IEEE International Conference on Robotics and Automation.
  17. Podder, T., Antonelli, G. and Sarkar, N. (2000). Fault tolerant control of an autonomous underwater vehicle under thruster redundancy: simulations and experiments. Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).
  18. Podder, T. and Sarkar, N. (1999). Fault tolerant decomposition of thruster forces of an autonomous underwater vehicle. Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C).
  19. Healey, A. and Lienard, D. (1993). Multivariable sliding mode control for autonomous diving and steering of unmanned underwater vehicles. IEEE Journal of Oceanic Engineering, 18(3), pp.327-339.
  20. Lewis, E. ed., (1988). Principles of Naval Architecture, Second Revision, Volume II: Resistance, Propulsion, and Vibration. 2nd ed. Jersey City, NJ: Soc. of Naval Architects and Marine Engineers.
  21. Trupov, A. (1990). Matematicheskaya model' podvodnogo apparata s uchetom dinamicheskikh svoystv upravlyayushchikh sistem [Mathematical model of underwater vehicle taking into account dynamics of control systems]. In: Proektirovanie podvodnykh apparatov: Sb. nauch. tr. [Underwater Vehicles Development: Conference proceedings]. pp.35-44.
  22. Fjellstad, O., Fossen, T. and Egeland, O. (1992). Adaptive control of ROVs with actuator dynamics and saturation. Proc. of the 2nd Intern. offshore and polar eng. conf. San Francisco, pp.513-519.
  23. Yuh, J. (1990). Modeling and control of underwater robotic vehicles. IEEE Transactions on Systems, Man, and Cybernetics, 20(6), pp.1475-1483.
  24. Ageev, M. ed., (1995). Uproshchennaya metodika rascheta dvizhiteley dlya APA [Simplified calculation methodology for UAV's propulsion device]. In: Podvodnye roboty i ikh sistemy [Underwater Robots and their systems]. Vladivostok: Dal'nauka.
  25. Fossen, T. (1991). Nonlinear Modeling and Control of Underwater Vehicles. Dr. Ing Thesis. Norwegian Institute of Technology.
  26. Fossen, T. and Balchen, J. (1988). Modeling and Non-Linear Self-Tuning Robust Trajectory Control of an Autonomous Underwater Vehicle. Modeling, Identification and Control: A Norwegian Research Bulletin, 9(4), pp.165-177.
  27. Lewis, D., Lipscombe, J. and Thomasson, P. (1984). The simulation of remotely operated underwater vehicles. In: Proceedings of the ROV '84 Conference and Exposition.
  28. Dand, I. and Every, M. (1983). An Overview of the Hydro dynamics of Umbilical Cables and Vehicles. In: SUBTECH' 83, Paper No. 10.4.
  29. Antonelli, G., Chiaverini, S., Sarkar, N. and West, M. (1999). Adaptive control of an autonomous underwater vehicle: experimental results on ODIN. Proceedings 1999 IEEE International Symposium on Computational Intelligence in Robotics and Automation. CIRA'99 (Cat. No.99EX375), pp.756-765.
  30. Choi, S. and Yuh, J. (1996). Experimental study on a learning control system with bound estimation for underwater robots. Autonomous Robots, 3(2-3), pp.187-194.
  31. Nie, J., Yuh, J., Kardash, E. and Inge Fossen, T. (1998). On-Board Sensor-Based Adaptive Control of Small UUVS in Very Shallow Water. IFAC Proceedings Volumes, 31(30), pp.191-196.
  32. Nie, J., Yuh, J., Kardash, E. and Fossen, T. (2000). On-board sensor-based adaptive control of small UUVs in very shallow water. International Journal of Adaptive Control and Signal Processing, 14(4), pp.441-452.
  33. Zhukov, A. and Makarychev, V. (2016). Sravnitel'nyy analiz algoritmov upravleniya podvodnym apparatom [Comparative analysis of UUV control algorithms]. In: Materialy nauchnoy konferentsii s mezhdunarodnym uchastiem «Nedelya nauki SPbPU» [Proceedings of scientific conference with international participation «Science Week in SPbPU»]. pp.42-45.

 

Editorial office address: 21, Tikhoretsky pr., Saint-Petersburg, Russia, 194064, tel.: +7(812) 552-13-25 e-mail: zheleznyakov@rtc.ru