Improving the accuracy of the UAV following along a given trajectory under wind loads by the SPSA method

Improving the accuracy of the UAV following along a given trajectory under wind loads by the SPSA method

Konstantin S. Аmelin
PhD in Physics and Mathematics, Saint Petersburg University, Scientific and Educational Center «Mathematical Robotics and Artificial Intelligence», Director, 7-9, Universitetskaya naberezhnaya, Saint Petersburg, 199034, Russia, tel.: +7(904)510-51-09, This email address is being protected from spambots. You need JavaScript enabled to view it., ORCID: 0000-0002-3643-5132

Oleg N. Granichin
Doctor of Physical and Mathematical Sciences, Saint Petersburg University, Professor, 7-9, Universitetskaya naberezhnaya, Saint Petersburg, 199034, Russia, tel.: +7(921)740-03-37, This email address is being protected from spambots. You need JavaScript enabled to view it., ORCID: 0000-0002-3631-7347

Vladimir S. Malzev
Saint Petersburg University, Scientific and Educational Center «Mathematical Robotics and Artificial Intelligence», Researcher, 7-9, Universitetskaya naberezhnaya, Saint Petersburg, 199034, Russia, tel.: +7(921)567-19-64

Sergey F. Sergeev
Doctor of Psychological Science, Professor, Saint Petersburg University, Professor, 7-9, Universitetskaya naberezhnaya, Saint Petersburg, 199034, Russia; Peter the Great Saint Petersburg Polytechnical University (SPbPU), Scientific and Research Laboratory of Complex Systems, Head of Laboratory, 29, Politekhnicheskaya ul., Saint Petersburg, 195251, Russia, tel.: +7(911)995-09-29, This email address is being protected from spambots. You need JavaScript enabled to view it., ORCID: 0000-0002-6677-8320


Received 30 August 2021

Abstract
One of the main areas of UAV application is the collection of data with their exact binding to the selected coordinate system (for example, aero photography). In this case, it is important to not only get the exact coordinates of data collection, but also to ensure the minimum deviation of the UAV from the path under the conditions of external disturbances (wind loads) acting on it. In the article a procedure for assessing wind speed and direction using the SPSA method is proposed. The results of simulation modeling of the algorithm's operation confirmed during field tests on an ultralight UAV are presented.

Key words
UAV control system, randomized algorithms, Kalman filter, GNSS, random process prediction methods.

Acknowledgements
This research is supported by St. Petersburg State University, project no. 73555239.

DOI
10.31776/RTCJ.9403

Bibliographic description
Amelin K. et al., 2021. Improving the accuracy of the UAV following along a given trajectory under wind loads by the SPSA method. Robotics and Technical Cybernetics, 9(4), pp.260-270.

UDC identifier:
519.711: 519.711

References  

  1. Ribeiro, M.I., 2004. Kalman and Extended Kalman Filters: Concept, Derivation and Properties. Lisboa : Institute for Systems and Robotics, p.43.
  2. Palanisamy, R.P., Cho, S., Kim, H. and Sim, S., 2015. Experimental validation of Kalman filter-based strain estimation in structures subjected to non-zero mean input. Smart Structures and Systems, 15(2), pp.489-503.
  3. Duník, J., Straka, O. and Šimandl, M., 2011. The Development of a Randomised Unscented Kalman Filter. In: Proceedings of 18th IFAC World Congress, 44(1), pp.8-13.
  4. James, C.S., 2005. Introduction to Stochastic Search and Optimization: Estimation, Simulation. Wiley Publ., p.618 p.
  5. Antal, C., Granichin, O. and Levi, S., 2010. Adaptive autonomous soaring of multiple UAVs using Simultaneous Perturbation Stochastic Approximation. In: Proceedings of 49th IEEE Conference on Decision and Control (CDC), pp.3656-3661.
  6. Alessandri, A. and Parisini, T., 1997. Nonlinear modeling of complex large-scale plants using neural networks and stochastic approximation. IEEE Transactions on Systems, Man, and Cybernetics — Part A: Systems and Humans, 27(6), pp.750-757.
  7. Amelin, K. and Granichin, O., 2012. Randomized controls for linear plants and confidence regions for parameters under external arbitrary noise. In: Proceedings of 2012 American Control Conference (ACC), pp.851-856.
  8. Claude, S., 1993. Time-Varying Feedback Stabilization of Car-like Wheeled Mobile Robots. International Journal of Robotics Research, 12(1), pp.55-64.
  9. Conte, G., Duranti, S. and Merz, T., 2004. Dynamic 3D path following for an autonomous helicopter. IFAC Proceedings Volumes, 37(8), pp.472-477.
  10. Fossen, T.I., Breivik, M. and Skjetne, R., 2003. Line-of-sight path following of underactuated marine craft. IFAC Proceedings Volumes, 36(21), pp.211-216.
  11. Ambrosino, G. et al., 2009. Path Generation and Tracking in 3-D for UAVs. IEEE Transactions on Control Systems Technology, 17(4), pp.980-988.
  12. Mangal, K., Postlethwaite, I. and Gu, D., 2010. A Suboptimal Path Planning Algorithm Using Rapidly-exploring Random Trees. International Journal of Aerospace Innovations, 2(4), pp.93-104.
  13. Zhou, B., Satyavada, H. and Baldi, S., 2017. Adaptive path following for Unmanned Aerial Vehicles in time-varying unknown wind environments. In: Proceedings of 2017 American Control Conference (ACC), p.1127-1132.
  14. Park, S., Deyst, J. and How, J.P., 2007. Performance and Lyapunov Stability of a Nonlinear Path Following Guidance Method. Journal of Guidance, Control, and Dynamics, 30(6), pp.1718–1728.
  15. Chen, H., Chang, K. and Agate, C.S., 2013. UAV Path Planning with Tangentplus-Lyapunov Vector Field Guidance and Obstacle Avoidance. IEEE Transactions on Aerospace and Electronic Systems, 49(2), pp.840-856.
  16. Sun, M., Zhu, R. and Yang, X., 2008. UAV Path Generation, Path Following and Gimbal Control. In: Proceedings of 2008 IEEE International Conference on Networking, Sensing and Control, pp.870-873.
  17. Ratnoo, A., Sujit, P.B. and Mangal, K., 2011. Adaptive Optimal Path Following for High Wind Flights. IFAC Proceedings Volumes, 44(1), p12985-12990.
  18. Healey, A.J. and Lienard, D., 1993. Multivariable sliding mode control for autonomous diving and steering of unmanned underwater vehicles. IEEE Journal of Oceanic Engineering, 18(3), pp.327-339.
  19. Jackson, S. et al., 2008. Tracking controllers for small UAVs with wind disturbances: Theory and flight results. In: Proceedings of 47th IEEE Conference on Decision and Control, pp.564-569.
  20. Ahmed, M. and Subbarao, K., 2010. Nonlinear 3-D trajectory guidance for unmanned aerial vehicles. In: Proceedings of 11th International Conference on Control Automation Robotics Vision, pp.1923–1927.
  21. Cunha, R., Silvestre, C. and Pascoal, A., 2003. A path following controller for model-scale helicopters. In: Proceedings of European Control Conference (ECC),2248-2253.
  22. Da Silva, J.E. and De Sousa, J.B., 2010. A dynamic programming approach for the motion control of autonomous vehicles. In: Proceedings of 49th IEEE Conference on Decision and Control (CDC), pp.6660-6665.
  23. Shehab, S. and Rodrigues, L., 2005. Preliminary results on UAV path following using piecewise-affine control. In: Proceedings of 2005 IEEE Conference on Control Applications, pp.358-363.
  24. Youngjoo, K. and Hyochoong, B., 2018. Introduction to Kalman Filter and Its Applications. IntechOpen Publ., p.16.
  25. Garulli, A., Giarre, L. and Zappa, G., 2003. Identification of approximated Hammerstein models in a worst-case setting. Automatic Control, IEEE Transactions on, 47(1), pp.2046-2050.
  26. Kuntsevich, V.M., 2007. Robastnaya ustoychivost' i sintez diskretnykh sistem upravleniya nelineynymi ob"ektami [Robust stability and synthesis of discrete control systems for nonlinear objects]. Problemy upravleniya i informatiki sistem, 4(39), pp.5-22. (in Russian).
  27. Aleksandrov, A.G. and Orlov, Yu.F., 2009. Konechno-chastotnaya identifikatsiya: dinamicheskiy algoritm [Finite-frequency identification: dynamic algorithm]. Problemy upravleniya, 4, pp.2-8. (in Russian).
  28. Granichin, O.N. and Fomin, V.N., 1986. Adaptivnoe upravlenie s ispol'zovaniem probnykh signalov [Adaptive control using test signals]. Avtomatika i telemekhanika, 2, pp.100–112. (in Russian).
  29. Granichin, O.N. and Polyak, B.T., 2003. Randomizirovannye Algoritmy Otsenivaniya i Optimizatsii pri Pochti Proizvol'nykh Pomekhakh [Randomized Algorithms for Estimation and Optimization with Almost Arbitrary Noise]. Moscow: Nauka Publ., p.293. (in Russian).
  30. Wildman, N. et al., 2014. MASC – a small Remotely Piloted Aircraft (RPA) for wind energy research. Advances in Science and Research, 11(5), pp.55-61.
  31. Dobrowolski, B., Kabaciński, M. and Pospolita, J., 2005. A mathematical model of the self-averaging Pitot tube. Flow Measurement and Instrumentation, 16(8), pp.251-265.
  32. Mayer, S. et al., 2012. A ‘No-Flow-Sensor’ Wind Estimation Algorithm for Unmanned Aerial Systems. International Journal of Micro Air Vehicles, 4(3), pp.15-30.
  33. Done, G.T.S., 1999. Book review on Dynamics of Flight: The Equations, Boiffier, J-L. (1998). The Aeronautical Journal, 103(1025), pp.358.
  34. Bange, J., 2009. Airborne Measurement of Turbulent Energy Exchange between the Earth Surface and the Atmosphere. P.178.
  35. Amelin, S., 2012. Randomization in control for a small UAV fly optimization under unknown arbitrary wind disturbances. Cybernetics and Physics, 1(2), pp.79-88.
Editorial office address: 21, Tikhoretsky pr., Saint-Petersburg, Russia, 194064, tel.: +7(812) 552-13-25 e-mail: zheleznyakov@rtc.ru