Pavel P. Anan’ev
PhD in Technical Sciences, Scientific and Educational Center «Innovative mining technologies», General Director, 4c1A, Leninsky pr., Moscow, 119049, Russia, This email address is being protected from spambots. You need JavaScript enabled to view it.
Anna P. Plotnikova
Scientific and Educational Center «Innovative mining technologies», Deputy General Director, 4c1A, Leninsky pr., Moscow, 119049, Russia, This email address is being protected from spambots. You need JavaScript enabled to view it.
Alexandr S. Timofeev
PhD in Technical Sciences, Academician N.V. Melnikov Institute for the Problems of Complex Development of Subsoil of RAS, Senior Research Scientist, 4, Kryukovsky tupik, Moscow, 111020, Russia, This email address is being protected from spambots. You need JavaScript enabled to view it.
Roman V. Mesсheryakov
Doctor of Technical Science, Professor, V.A. Trapeznikov Institute of Control Sciences of RAS, Leading Research Scientist, 65, Profsoyuznaya ul., Moscow, 117997, Russia, This email address is being protected from spambots. You need JavaScript enabled to view it.
Konstantin O. Belyakov
Tomsk State University (TSU), Administration Advisor, 36, Prospekt Lenina, Tomsk, 634050, Russia, This email address is being protected from spambots. You need JavaScript enabled to view it.
Received 28 July 2021
Abstract
The article discusses the issues of providing full-scale testing of machines and spacecraft. The authors consider the surface of a cosmic body and propose the creation of an analogue of the regolith of the Moon and Mars. It is noted that it is necessary to observe not only the physicochemical and granulometric composition of the analogue, but also its electromagnetic charge, which will allow testing robotic systems more fully. Conclusions and description of the process of regolith creation and its properties are given.
Key words
Robotic system, space, regolith, electromagnetic properties, physical modeling.
DOI
https://doi.org/10.31776/RTCJ.9303
Bibliographic description
Anan’ev, P. et al., 2021. Problems of robotic systems testing for moving on space objects. Robotics and Technical Cybernetics, 9(3), pp.180-185.
UDC identifier:
007.52
References
- Meshcheryakov, R.V. et al., 2016. Perspektivy razvitiya kosmicheskoi gorno-pererabatyvayushchei otrasli [Prospects for the development of the space mining and processing industry]. Innovatsii, 4, pp.3-8. (in Russian).
- Ananiev, P.P. et al., 2017. Metodicheskie podkhody k pererabotke kosmicheskogo mineral'nogo syr'ya [Methodological approaches to the processing of space minerals]. Rudy i metally, 2, pp.69-74. (in Russian).
- Ananiev, P.P. et al., 2016.Tekhniko-ekonomicheskie trebovaniya k gornym protsessam i oborudovaniyu pri dobyche vody iz lunnogo grunta [Technical and economic requirements for mining processes and equipment for the extraction of water from the lunar soil]. Innovatsii, 9, pp.7-10. (in Russian).
- Ignatova, A.M. and Ignatov, M. N., 2013. Ispol'zovanie resursov regolita dlya osvoeniya lunnoy poverkhnosti [The use of regolith resources for the development of the lunar surface]. Mezhdunarodnyy zhurnal eksperimental'nogo obrazovaniya, 11 (part 2), pp.101-110. (in Russian).
- Stephen, J. I. and Benaroya Haym, 2017. A structural assessment of unrefined sintered lunar regolith simulant. Acta Astronautica, 140, pp.517-536. DOI: 10.1016/j.actaastro.2017.09.018.
- Slyuta, E.N., 2014. Fiziko-mekhanicheskie svoystva lunnogo grunta [Physical and mechanical properties of lunar soil]. Astronomicheskiy vestnik, 5, pp.358-382. (in Russian).
- Scott, A.N. et al., 2017. Development of a Martian regolith simulant for in-situ resource utilization testing. Acta Astronautica, 131, pp.45-49. DOI: 10.1016/j.actaastro.2016.11.024.
- Semkin, N.D. and Vidmanov, A.S., 2013. Modeli dinamiki dvizheniya lunnoy pyli i metody polucheniya potokov zaryazhennykh chastits pyliv laboratornykh usloviyakh [Models of the dynamics of motion of lunar dust and methods of obtaining flows of charged particles of dust in laboratory conditions]. Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta [Samara SAU Bulletine], pp.164-176. (in Russian).
- Weiblen, P.W., Murawa, M.J. and Reid, K.J., 1990. Preparation of stimulants for lunar surface materials. In: Engineering, Construction and operation in Space, II, pp.428-435.
- Alizar, A., 2015. NASA gotovo k postroyke orbital'noy stantsii dlya remonta i zapravki sputnikov [NASA is ready to build an orbital station for repair and refueling satellites]. Available at: <https://habr.com/ru/post/380907/> (Accessed 04 August 2021). (in Russian).
- Alifanov, O.M. et al., 2014. Fundamental'nye Kosmicheskie Issledovaniya. Kniga 2. Solnechnaya Sistema [Basic Space Research. Book 2. Solar System]. Moscow: FIZMATLIT Publ., p.456. (in Russian).
- Demidov, N.E., Bazilevskiy, A.T. and Kuz'min, R.O., 2015. Grunt marsa: raznovidnosti, struktura, sostav, fizicheskie svoystva, burimost' i opasnosti dlya posadochnykh apparatov [Mars soil: varieties, structure, composition, physical properties, drillability and hazards for lander]. Astronomicheskiy vestnik, 49(4), pp.243-261. (in Russian).
- Cherkasov, I.I. and Shvarev, V.V., 1979. Gruntovedenie Luny [Moon Soil Science]. Moscow: Nauka Publ., p.232. (in Russian).
- Girina, O.A., 1998. Piroklasticheskie Otlozheniya Sovremennykh Izverzheniy Andezitovykh Vulkanov Kamchatki i Ikh Inzhenerno-Geologicheskie Osobennosti [Pyroclastic Deposits of Modern Eruptions of Andesitic Volcanoes in Kamchatka and Their Geotechnical Features]. Vladivostok, Russia: Dal'nauka Publ., p.174. (in Russian).