Multi-criteria optimization of the four-finger gripper mechanism

Multi-criteria optimization of the four-finger gripper mechanism

Vu Duc Quyen
Saint-Petersburg Federal Research Center of the Russian Academy of Sciences, Laboratory of Autonomous Robotic Systems, 39, 14 line V.O., Saint-Petersburg, 199178, Russia; Saint-Petersburg State University of Aerospace Instrumentation (SUAI), Department of Electromechanics and Robotics, Postgraduate Student, 67-A, Bolshaya Morskaya str., Saint-Petersburg, 190000, Russia, tel.: +7(968)185-86-86, This email address is being protected from spambots. You need JavaScript enabled to view it.

Andrey L. Ronzhin
Doctor of Technical Science, Saint-Petersburg Federal Research Center of the Russian Academy of Sciences, Laboratory of Autonomous Robotic Systems, Professor, Director, 39, 14 line V.O., Saint-Petersburg, 199178, Russia, tel.: +7(911)253-24-32, This email address is being protected from spambots. You need JavaScript enabled to view it.


Received 21 September 2020

Abstract
Three posterior algorithms NSGA-II, MOGWO and MOPSO to solve the problem of multicriteria optimization of the robotic gripper design are considered. The description of the kinematic model of the developed prototype of the four-fingered gripper for picking tomatoes, its limitations and objective functions used in the optimization of the design are given. The main advantage of the developed prototype is the use of one actuator for the control of the fingers and the suction nozzle. The results of optimization of the kinematic model and the dimensions of the elements of robotic gripper using the considered posterior algorithms are presented.

Key words
Robotic gripper, multi-criteria optimization, NSGA-II, MOGWO, MOPSO, kinematic model.

Acknowledgements
The presented work was supported by the Russian Science Foundation (grant no. 16-19-00044П).

DOI
https://doi.org/10.31776/RTCJ.8404

Bibliographic description
Vu, Q. and Ronzhin, A., 2020. Multi-criteria optimization of the four-finger gripper mechanism. Robotics and Technical Cybernetics, 8(4), pp.276-286.

UDC identifier:
004.032.26

References

  1. Schwandt, A. and Yushchenko, A.S, 2020. Programming collaborative manipulation robots using the augmented reality interface. Robotics and Technical Cybernetics, 8(2), pp.139-149. (in Russian).
  2. Al Mashhadani, Yu.I., 2020. Design and analysis of a humanoid manipulator with seven degrees of freedom based on a hybrid intelligent controller. SPIIRAS Proceedings, 4(19). pp.774-802. https://doi.org/10.15622/sp.2020.19.4.3. (in Russian).
  3. Ulyanov, S.V., Reshetnikov, A.G. and Nemchaninov, A.V., 2020. Cognitive intelligent control of a robotic arm - a prosthesis. Part 2. Robotics and Technical Cybernetics, 8(1), pp.41-52. (in Russian).
  4. Mirjalili, S. and Dong, J.S., 2020. Multi-Objective Optimization Using Artificial Intelligence Techniques. Springer, Cham.
  5. Rapoport, E.Y. and Pleshivtseva, Y.E., 2018. Method of Multiobjective Optimization of Controlled Systems with Distributed Parameters. SPIIRAS Proceedings, 5, pp.64–96. doi:10.15622/sp.60.3. (in Russian).
  6. Neydorf, R.A. and Aghajanyan, A.G., 2018. Dual Optimization of Monochrome Images Tone Approximation using Parallel Evolutionarily Genetic Search. SPIIRAS Proceedings, 5, pp.156–188. doi:10.15622/sp.60.6.
  7. Meignan, D., Knust, S. and Frayret, J., 2015. A review and taxonomy of interactive optimization methods in operations research. The ACM Transactions on Interactive Intelligent Systems, 5(3), pp.1-43.
  8. Srinivas, N. and Deb, K., 1994. Multiobjective function optimization using nondominated sorting genetic algorithms. IEEE Transactions on Evolutionary Computation, 2(3), pp.221–248.
  9. Mirjalili, S., Mirjalili, S.M. and Lewis, A., 2014. Grey wolf optimizer. Advances in Engineering Software, 69, pp.46–61.
  10. Poli, R., Kennedy, J. and Blackwell, T., 2007. Particle swarm optimization. Swarm Intell, 1, pp.33–57.
  11. Eberhart, R.C. and Shi, Y., 2001. Particle swarm optimization: developments, applications and re-sources. In: 2001 Congress on Evolutionary Computation IEEE. Pp.81–86.
  12. Raghuwanshi, M.M. and Kakde, O.G., 2004. Survey on multiobjective evolutionary and real coded genetic algorithms. In: Proceedings of the 8th Asia Pacific Symposium on Intelligent and Evolutionary Systems. Pp.150–161.
  13. Mäkinen, R.A.E., Jacques, P. and Toivanen, J., 1999. Multidisciplinary shape optimization in aerodynamics and electromagnetics using genetic algorithms. International Journal for Numerical Methods in Fluids, 30(2).
  14. Yen, G.G. and Leong, W.F.,2011. A multiobjective particle swarm optimizer for constrained optimization. International Journal of Swarm Intelligence Research, 2(1), pp.1-23. doi: 10.4018/jsir.2011010101.
  15. Vu, Q. and Ronzhin, A., 2019. A model of four-finger gripper with a built-in vacuum suction nozzle for harvesting tomatoes. 14th International Conference on Electromechanics and Robotics - Zavalishin's Readings, 154, pp.149–160. doi: 10.1007/978-981-13-9267-2_13.
  16. Vu, Q. and Ronzhin, A., 2020. Models and algorithms for design robotic gripper for agricultural products. Comptes Rendus de L'Academie Bulgare des Sciences, 73(1), pp.103–110. doi: 10.7546/CRABS.2020.01.13.
  17. Tan, K.C., Lee, T.H. and Khor, E.F., 2002. Evolutionary algorithms for multi-objective optimization: performance assessments and comparisons. Artificial Intelligence Review, 7, pp.251–290.
  18. Chambers, J.M., Cleveland, W.S., Tukey, P.A. and Kleiner, B., 1983. Graphical Methods for Data Analysis. Pacific CA: Wadsworth & Brooks/Cole.
  19. Pavliuk, N., Smirnov, P., Kondratkov, A. and Ronzhin, A., 2019. Connecting gripping mechanism based on iris diaphragm for modular autonomous robots. In: Proceedings of International Conference on Interactive Collaborative Robotics. Pp.260–269. doi: 10.1007/978-3-030-26118-4_25.
  20. Iakovlev, R., Denisov, A. and Prakapovich, R., 2020. Iterative Method for Solving the Inverse Kinematics Problem of Multi-Link Robotic Systems with Rotational Joints. 14th International Conference on Electromechanics and Robotics «Zavalishin's Readings». Smart Innovation, Systems and Technologies, 154, pp.237-251. doi: 10.1007/978-981-13-9267-2_20.
  21. Saveliev, A., Pshchelko, N. and Krestovnikov, K., 2019. Method of sensitivity calculation for electrete diaphragm capacitive sensors. In: Proceedings of International Conference on Developments in eSystems Engineering, DeSE. Pp.721-725. doi: 10.1109/DeSE.2019.00134.
  22. Krestovnikov, K.D., Cherskikh, E.O. and Saveliev, A.I., 2020. Investigation of the influence of the length of the intermediate magnetic circuit on the characteristics of magnetic gripper for robotic complexes of the mining industry. Journal of Mining Institute, 241(1), pp. 46–52. doi: 10.31897/pmi.2020.1.46. (in Russian).
  23. Gorbach, N. et al.,2020. Calculation methodology for power characteristics of electroadhesive contact for gripping conductive and dielectric objects. 14th International Conference on Electromechanics and Robotics – Zavalishin's Readings. Smart Innovation, Systems and Technologies, 154, pp.697-705. doi: 10.1007/978-981-13-9267-2_58.
Editorial office address: 21, Tikhoretsky pr., Saint-Petersburg, Russia, 194064, tel.: +7(812) 552-13-25 e-mail: zheleznyakov@rtc.ru