Organization of supervisory control in scenarios of extreme robotics

Organization of supervisory control in scenarios of extreme robotics

Ekaterina Yu. Smirnova
Russian State Scientific Center for Robotics and Technical Cybernetics (RTC), Research Center, Deputy Head of Center, 21, Tikhoretsky pr., Saint-Petersburg, 194064, Russia, tel.: +7(812)552-47-10, This email address is being protected from spambots. You need JavaScript enabled to view it.

Boris A. Spassky
PhD in Technical Sciences, RTC, Head of Section, 21, Tikhoretsky pr., Saint-Petersburg, 194064, Russia, tel.: +7(812)552-13-25, This email address is being protected from spambots. You need JavaScript enabled to view it., ORCID: 0000-0002-5210-5408


Received 30 October 2020

Abstract
The article describes the general principles of supervisory control organization in extreme robotics scenarios with different levels of autonomy. It is shown that increasing the level of autonomy of the robot allows reducing the operator’s load due to the division of labor between man and machine and to the implementation of the supervisory control mode, the essence of which is the decomposition of the mission into scenarios, which describe algorithms for solving functionally completed tasks and consists of sequence of simple technological operations. Such scenarios are executed automatically. In this case, the operator mainly implements the functions of monitoring and diagnostics, and the control functions are reduced to making decisions about the execution of the next scenario or intervention into execution of the current scenario in cases when the robot makes an obvious mistake or encounters a problem that it cannot solve on its own.
Examples of supervisory control implementation when performing work on critical infrastructure facilities, performing search and rescue and other special operations under challenging conditions, including those of heterogeneous groups of robots, are given.

Key words
Supervisory control, behavior planning, extreme robotics, mobile robot, robot team, mobile robot system.

DOI
https://doi.org/10.31776/RTCJ.8401

Bibliographic description
Smirnova, E. and Spassky, B., 2020. Organization of supervisory control in scenarios of extreme robotics. Robotics and Technical Cybernetics, 8(4), pp.245-258.

UDC identifier:
62-5:004.896:007.5

References

  1. Spassky, B., 2020. Teleoperation in extreme robotics. Robotics and Technical Cybernetics, 8(2), pp.101-111. (in Russian).
  2. Goodrich, M.A. and Schultz, A.C., 2007. Human–Robot Interaction: A Survey. Available at:<https://www.researchgate.net/publication/220613473_Human-Robot_Interaction_A_Survey> [Accessed 29 October 2020].
  3. Hendy, K.C. and Farrell, P.S.E., 1994. Implementing a Model of Human Information Processing in a Task Network Simulation Environment. Computer Science. Available at: <https://www.semanticscholar.org/paper/Implementation-of-a-Human-Information-Processing-Hendy/dd1c887332245159732270efb845c8060df69d32#paper-header> [Accessed 29 October 2020].
  4. Sheridan, T.B., 2011. Adaptive Automation, Level of Automation, Allocation Authority, Supervisory Control, and Adaptive Control: Distinctions and Modes of Adaptation. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 41(4), pp.662-667. DOI: 10.1109/TSMCA.2010.2093888.
  5. Chen, J., Barnes, M. and Harper-Sciarini, M., 2010. Supervisory Control of Unmanned Vehicles. Pp.60. Available at: <https://www.researchgate.net/publication/235204081_Supervisory_Control_of_Unmanned_Vehicles > [Accessed 29 October 2020].
  6. Sheridan, T.B., 2016. Human-Robot Interaction: Status and Challenges. Human Factors, 58(4), pp.525-532.
  7. Van Breda, L., 2012. Supervisory Control of Multiple Uninhabited Systems – Methodologies and Enabling HumanRobot Interface Technologies. North Atlantic Treaty Organisation. RTO Technical Report TRHFM-170.
  8. Spassky, B., 2016. Application of heterogeneous robotic systems. State-of-the-art. Robotics and Technical Cybernetics, 2(11), pp.8-19. (in Russian).
  9. Goodrich, M. and Olsen, D., 2003. Seven principles of efficient interaction. In: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics. Pp.3943-3948.
  10. Miller, C., 2013. Frameworks for Supervisory Control: Characterizing Relationships with Uninhabited Vehicles. Journal of Human-Robot Interaction, 1(2). DOI: 10.5898/JHRI.1.2.Miller.
  11. Gorodetsky, V.I., Samoylov, V.V. and Trotskii, D.V., 2015. The reference ontology of collective behavior of autonomous agents and its extensions. Journal of Computer and Systems Sciences International, 54(5), pp.765-782. (in Russian).
  12. Apoorva, Gautam, R. and Kala, R., 2018. Motion Planning for a Chain of Mobile Robots Using A* and Potential Field. Robotics, 7(2), p.20. Available at: <http://dx.doi.org/10.3390/robotics7020020> [Accessed 29 October 2020].
  13. NASA. n.d. Autonomous Planetary Mobility. [online] Available at: <https://mars.nasa.gov/mer/mission/technology/autonomous-planetary-mobility/> [Accessed 29 October 2020].
  14. Dulce-Galindo, J. A., Santos, M. A., Raffo, G. V. and Pena, P. N., 2019. Autonomous Navigation of Multiple Robots using Supervisory Control Theory. In: Proceedings of 2019 18th European Control Conference (ECC). Naples,Italy, pp.3198-3203. DOI: 10.23919/ECC.2019.8796261.
  15. Gonzalez, D.B., Pérez, J., Milanes, V. and Nashashibi, F., 2016. A Review of Motion Planning Techniques for Automated Vehicles. IEEE Transactions on Intelligent Transportation Systems, 17(4), pp. 1135-1145. DOI: 10.1109/TITS.2015.2498841.
  16. Castro, M., Ferre, M. and Masi, A., 2018. CERNTAURO: A Modular Architecture for Robotic Inspection and Telemanipulation in Harsh and Semi-Structured Environments. IEEE Access, 6, pp.37506-37522. DOI:10.1109/ACCESS.2018.2849572.
  17. Merriaux, P. et al., 2019. The VIKINGS Autonomous Inspection Robot: Competing in the ARGOS Challenge. IEEE Robotics and Automation Magazine, 26(1), pp.21-34. DOI: 10.1109/MRA.2018.2877189.
  18. Park, S., Oh, Y. and Hong, D., 2017. Disaster response and recovery from the perspective of robotics. Int. J. Precis. Eng. Manuf., 18, pp.1475–1482. DOI: 10.1007/s12541-017-0175-4.
  19. Atkeson, C.G. et al., 2018. What Happened at the DARPA Robotics Challenge and Why. In: Springer Tracts in Advanced Robotics. The DARPA Robotics Challenge Finals: Humanoid Robots to the Rescue, pp.667-684. DOI:10.1007/978-3-319-74666-1_17.
  20. Gromoshinskii, D.A., Zhukov, A.M., Popov, A.V. and Smirnova, E.Yu., 2018. Providing safe ground sampling inside the working zone of a manipulator with computer vision. Extreme Robotics, 1(1), pp.98-99.
  21. Bitnyj-Shljahto, V. et al., 2019. Ob”ektno-orientirovannaja rekonstrukcija rabochej zony manipuljatora avarijnospasatel'nogo robota [Object-oriented reconstruction of the working area of the rescue robot manipulator]. In: XI Vserossijskajanauchno-tehnicheskaja konferencija s mezhdunarodnym uchastiem «Robototehnika i iskusstvennyj intellekt»: materialy [Proceedings of All-Russian Scientific and Technical Conference with International Participation on Robotics and Artificial Intelligence]. Pp.285-291. (in Russian).
  22. Goodrich, M. et al., 2007. Managing autonomy in robot teams: Observations from four experiments. In: Computer Science 2007 2nd ACM/IEEE International Conference on Human-Robot Interaction (HRI), pp.25-32.
  23. Kulichenko, A.D. et al., 2020. Ontology for group of rescuing robots. IOP Conference Series: Earth and Environmental Science, 539.
  24. Liu, Y., Ficocelli, M. and Nejat, G., 2015. A supervisory control method for multi-robot task allocation in urban search and rescue. In: Proceedings of 2015 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR). DOI: 10.1109/ssrr.2015.7443000.
  25. Furci, M., Paoli, A. and Naldi, R., 2013. A supervisory control strategy for robot-assisted search and rescue in hostile environments. In: Proceedings of 2013 IEEE 18th Conference on Emerging Technologies and Factory Automation (ETFA). Pp.1-4. DOI: 10.1109/ETFA.2013.6648162.
  26. Hong, A. et al., 2019. Investigating Human-Robot Teams for Learning-Based Semi-autonomous Control in Urban Search and Rescue Environments. J Intell Robot Syst, 94, pp.669–686. DOI: 10.1007/s10846-018-0899-0.
  27. Bitnyj-Shljahto, V. et al., 2019. Organizacija vzaimodejstvija special'nyh robotov na baze kriterija osvedomlennosti [Organization of interaction of special robots based on the criterion of awareness]. In: XI Vserossijskaja nauchno-tehnicheskaja konferencija s mezhdunarodnym uchastiem «Robototehnika i iskusstvennyj intellekt»: materialy [Proceedings of All-Russian Scientific and Technical Conference with International Participation on Robotics and Artificial Intelligence]. Pp.409. (in Russian).
  28. Polovko, S.A., 2019. Koncepcija sozdanija giperizbytochnogo mnogofunkcional'nogo neobitaemogo podvodnogo sredstva [The concept of creating a hyper-redundant multifunctional unmanned underwater vehicle]. In: XI Vserossijskaja nauchno-tehnicheskaja konferencija s mezhdunarodnym uchastiem «Robototehnika i iskusstvennyj intellekt»: materialy [Proceedings of All-Russian Scientific and Technical Conference with International Participation on Robotics and Artificial Intelligence]. (in Russian).
Editorial office address: 21, Tikhoretsky pr., Saint-Petersburg, Russia, 194064, tel.: +7(812) 552-13-25 e-mail: zheleznyakov@rtc.ru