Sergey V. Ulyanov
Doctor of Physical and Mathematical Sciences, Joint Institute for Nuclear Research, Laboratory of Information Technologies (JINR LIT), Professor, 6, ul. Joliot-Curie, Dubna, Moscow region, 141980, Russia, tel.: +7(49621)6-60-10, This email address is being protected from spambots. You need JavaScript enabled to view it.
Andrey G. Reshetnikov
PhD in Technical Sciences, Joint Institute for Nuclear Research, Laboratory of Infor-mation Technologies (JINR LIT), Assistant Professor, 6, ul. Joliot-Curie, Dubna, Moscow region, 141980, Russia, tel.: +7(49621)6-60-10, This email address is being protected from spambots. You need JavaScript enabled to view it.
Kirill V. Koshelev
Joint Institute for Nuclear Research, Laboratory of Information Technologies (JINR LIT), Postgraduate Student, 6, ul. Joliot-Curie, Dubna, Moscow region, 141980, Russia,, tel.: +7(977)710-41-40, This email address is being protected from spambots. You need JavaScript enabled to view it.
Alexei V. Shishaev
Dubna State University, Institute of the System Analysis and Management, Student, 19, Universitetskaya ul., Dubna, Moscow region, 141980, Russia, tel.: +7(49621)6-60-10, This email address is being protected from spambots. You need JavaScript enabled to view it.
Received 5 March 2020
Abstract
Digital image processing merges with the field of artificial intelligence in the task of computer vision. This article continues the description of the pattern recognition system based on stereo vision technology. In a number of tasks related to machine vision, images in binary representation are used as input. Moreover, these tasks can be quite simple (outlining based on the color correlation of pixels), as well as complex (recognition and classification, positioning and autonomous navigation). The best results in pattern recognition are obtained using convolutional neural networks (CNN). However, the stage of preliminary image processing, which will be discussed in this article, plays an important role in achieving high quality recognition. In addition, binary image processing methods are applicable in the processing and analysis of grayscale and color images. This work is an integral part of the description of the stereovision system of a mobile robot, the neural network module of which has already been considered previously. The article presents the results of the pre-processing and filtering unit. Possible generalizations of the proposed approach based on quantum soft computing technology and quantum deep machine learning using quantum neural networks are discussed.
Key words
Pattern recognition, stereovision, robotics, image pre-processing, noise filtering, ROS (Robot Operating System).
DOI
https://doi.org/10.31776/RTCJ.8306
Bibliographic description
Ulyanov, S. et al., 2020. Stereovision system of mobile robot: image pre-processing stage. Robotics and Technical Cybernetics, 8(3), pp.206-216.
UDC identifier:
004.932
References
- Hinton, G. E., 2006. A fast learning algorithm for deep belief nets. Neural Computation, 18, pp.1527-1554.
- LeCun, Y., Bengio, Y. and Hinton, G. E., 2015. Deep Learning. Nature, 521, pp.436 – 444.
- Gonzalez, R., 2012. Tsifrovaya Obrabotka Izobrazhenij [Digital Image Processing]. Moscow, p.1072. (In Russian).
- Yane, B., 2007. Tsifrovaya Obrabotka Izobrazhenij [Digital Image Processing]. Moscow, pp.16-24. (In Russian).
- Duda, R. and Hart, P., 1976. Raspoznavanije Obrazov i Analiz Scen [Pattern Recognition and Scene Analysis]. Moscow, p.511. (In Russian).
- Marr, D., 1987. Zrenije. Informatsionnyj Podhod k Isucheniju Predstavlenija i Obrabotki Zritelnih Obrazov [Vision. Information Approach to the Study of the Representation and Processing of Visual Images]. Moscow, p.404. (In Russian).
- Ulyanov, S., Reshetnikov, A. and Koshelev, K., 2019. Intellektual’naja sistema raspoznavanija obrazov mobil’nogo robota na osnove stereozrenija [Intelligent pattern recognition system of mobile robot based on stereovision]. Robotics and Technical Cybernetics, 7(3), pp.224-232. (In Russian).
- Siforov, V. and Yaroslavskij, L., 1988. Adaptivnije Metody Obrabotky Izobrazhenij [Adaptive Image Processing Methods]. Moscow, p.244. (In Russian).
- Wildrow, B. and Stearns, S., 1989. Adaptivnaja Obrabotka Signalov [Adaptive Signal Processing]. Moscow, p.440. (In Russian).
- Canny, J., 1986. A computational approach to edge detection. In: IEEE Transactions on Pattern Analysis and Machine Intelligence, pp.679-698.
- Serra, J., 1984. Image Analysis, Mathematical Morphology. Academic Press, p.610.
- Barhatova, I. and Ulyanov, S., 2015. Intellektual’nije samoorganizujuschijesya kognitivnije regulyatory. Ch. 3: Informatsionno-termodinamicheskij zakon raspredelenija kachestva i obobschennaja struktura intellektual’nogo kognitivnogo upravlenija [Intelligent Self-Organized Cognitive Controllers. Pt 3: Information-Thermodynamics Quality Distribution Law and Generalized Structure of Intelligent Cognitive Control]. [online] Sistemnyj analiz v nauke i obrazovanii: jelektron. nauch. zhurnal [Journal of Systems Analysis in Science and Education], 1. Available at: <http:/www.sanse.ru/archive/32> [Accessed 23 Feb. 2020]. (In Russian).
- Litvintseva, L., Ulyanov, S. et al., 2005. Quantum information and quantum computational intelligence: Backgrounds and applied toolkit of information design technologies. Milan, Note del Polo (Ricerca), Universita degli Studi di Milano, pp.78-86.
- Le, P.Q., Iliyasu, A.M., Dong, F. and Hirota, K., 2010. Fast geometric transformations on quantum images. IAENG Intern. J. of Applied Mathematics, 40(3), pp.1459-1497.
- Ulyanov, S. and Petrov, S., 2012. Kvantovoe raspoznavanije lits i kvantovaja visual’naja kriptografija: modeli i algoritmi [Quantum Face Recognition and Quantum Visual Cryptography: Models and Algorithms]. [online] Sistemnyj analiz v nauke i obrazovanii: jelektron. nauch. zhurnal [Journal of Systems Analysis in Science and Education], 1. Available at: <http://http:/www.sanse.ru/archive/23> [Accessed 28 Feb. 2020]. (In Russian).
- Gol’denblat, I. and Ulyanov, S., 1979. Vvedenije v Teoriju Otnositel’nosty i Ejo Primenenije v Novoj Tehnike [Introduction to the Theory of Relativity and its Application in New Technology]. Moscow, p. 278. (In Russian).
- Ulyanov, S., 2015. Kvantovaja Relyativistskaja Informatika [Quantum Relativistic Informatics]. LAP Lambert Academic Publ., p.392. (In Russian).