Sergey V. Ulyanov
Doctor of Physical and Mathematical Sciences, Joint Institute for Nuclear Research, Laboratory of Information Technologies (JINR LIT), Professor, 6, ul. Joliot-Curie, Dubna, Moscow region, 141980, Russia; INESYS LLC (EFKO GROUP), 20, Bld. 1, Ovchinnikovskaya naberezhnaya, Moscow, 115035, Russia; National University of Science and Technology «MISIS» (NUST MISIS), 4, Leninskiy pr., 119049, Moscow, Russia, tel.: +7(49621)6-40-19, This email address is being protected from spambots. You need JavaScript enabled to view it.
Viktor S. Ulyanov
PhD in Technical Sciences, INESYS LLC (EFKO GROUP), 20, Bld. 1, Ovchinnikovskaya naberezhnaya, Moscow, 115035, Russia; NUST MISIS, 4, Leninskiy pr., 119049, Moscow, Russia, This email address is being protected from spambots. You need JavaScript enabled to view it.
Received 30 December 2019
Abstract
The concept of an intelligent control system for a complex nonlinear biomechanical system of an autonomous robotic unicycle is considered. A thermodynamic approach to study optimal control processes in complex nonlinear dynamic systems is used. The results of stochastic simulation of a fuzzy intelligent control system for various types of external / internal excitations for a dynamic, globally unstable control object - robotic unicycle based on soft computing (Computational Intelligence Toolkit) technology are presented. A new approach to design of an intelligent control system based on the principle of the minimum entropy production (minimum of useful resource losses) determination in the movement of the control object and the control system is developed. This determination as a fitness function in the genetic algorithm is used to achieve robust control of a robotic unicycle. An algorithm for entropy production calculation and representation of their relation with the Lyapunov function (a measure of stochastic robust stability) is described.
Key words
Robotics, intelligent control systems, essentially nonlinear model, globally unstable model, stochastic simulation, soft computing.
DOI
https://doi.org/10.31776/RTCJ.8204
Bibliographic description
Uyanov, S. and Ulyanov, V., 2020. End-to-end soft computing technology application to robotic unicycle intelligent robust control system. Robotics and Technical Cybernetics, 8(2), pp.119-138.
UDC identifier:
004.89:681.511:007.52
References
- Schoonwinkel, A., 1987. Design And Test Of A Computer Stabilized Unicycle. PhD. Stanford University.
- Vos, D.W., 1992. Nonlinear Control Of An Autonomous Unicycle Robot: Practical Issues. PhD. Massachusetts Institute of Technology.
- Ulyanov, S., Sheng, Z. and Yamafuji, K., 1995. Fuzzy Intelligent control of robotic unicycle: A New benchmark in nonlinear mechanics. In: Proc. Intern. Conf. on Recent Advanced Mechatronics. Vol.2.
- Ulyanov, S., Watanabe, S. and Ohkura, T., 1995. Self-organization fuzzy chaos intelligent controller for a robotic unicycle: A New benchmark in AI control. In: Proc. of 5th Intelligent System Symposium: Fuzzy, AI and Neural Network Applications Technologies (FAN Symp,’95).
- Sheng, Z., Yamafuji, K. and Ulyanov, S., 1996. Study on the Stability and Motion Control of a Unicycle : 3rd Report, Characteristics of Unicycle Robot. JSME international journal. Ser. C, Dynamics, control, robotics, design and manufacturing, 39(3), pp.560-568.
- Panfilov, S. and et al., 2000. Robust Fuzzy Control of Non-Linear Dynamic Systems Based on Soft Computing with Minimum of Entropy Production Rate. In: Proc. Int. Conf. ICAFS 2000.
- Rouche, N., Habets, P. and Laloy, M., 1977. Stability Theory By Liapunov’S Direct Method. Berlin: Springer.
- Ulyanov, V., Panfilov, S., Ulyanov, S., Litvintseva, L., Kurawaki, I. and Tanaka, K., 2000. Principle of minimum entropy production in applied soft computing for advanced intelligent robotics and mechatronics. Soft Computing, 4(3), pp.141-146.
- Ulyanov, S., Yamafuji, K., Ulyanov, V., Kurawaki, I., Hagiwara, T. and Panfilov, S., 1999. Computational intelligence for robust control algorithms of complex dynamic systems with minimum entropy production. Part1: simulation of entropy-like dynamic behavior and Lyapunov stability. Journal of Advanced Computational Intelligence and Intelligent Informatics, 3(2), pp.82-98.
- Ulyanov, S. and Yamafuji, K., 1996. Fuzzy Intelligent emotion and instinct control of a robotic unicycle. In: Proc. 4th Intern. Workshop on Advanced Motion Control.
- Ulyanov, S. and et al., 1996. A new physical measure for mechanical controllability and intelligent control of a robotic unicycle on basis of intuition, instinct and emotion computing. In: Proc. 2nd Intern. Conf. on Application on Fuzzy Systems and Soft Computing (ICAF’96).
- Ulyanov, S., Watanabe, S., Ulyanov, V., Yamafuji, K., Litvintseva, L. and Rizzotto, G., 1998. Soft computing for the intelligent robust control of a robotic unicycle with a new physical measure for mechanical controllability. Soft Computing - A Fusion of Foundations, Methodologies and Applications, 2(2), pp.73-88.
- Lauk, M., Chow, C., Pavlik, A. and Collins, J., 1998. Human Balance out of Equilibrium: Nonequilibrium Statistical Mechanics in Posture Control. Physical Review Letters, 80(2), pp.413-416.
- Ulyanov, V., Yamafuji, K., Ulyanov, S. and Tanaka, K., 1999. Computational Intelligence with New Physical Controllability Measure for Robust Control Algorithm of Extension- Cableless Robotic Unicycle. Journal of Advanced Computational Intelligence and Intelligent Informatics, 3(2), pp.136-147.
- Murata.com. 2011. MURATA GIRL | Murata Manufacturing Co., Ltd. [online] Available at: <https://www.murata.com/en-sg/about/mboymgirl/mgirl> [Accessed 1 December 2019].
- Wieser, E., 2017. Machine Learning for a Miniature Robotic Unicycle. Master of science. Cambridge University.
- De Vries, J.F., 2018. Redesign & Implementation of a Moment Exchange Unicycle Robot. Master of sciences. Twente University.
- Kim, S., Lee, J., Hwang, J., Ahn, B. and Lee, J., 2010. Dynamic Modeling and Performance Improvement of a Unicycle Robot. Journal of Institute of Control, Robotics and Systems, 16(11), pp.1074-1081.
- Ulyanov, S. and et al., 2004. System and Method for Stochastic Simulation of Nonlinear Dynamic Systems with a High Degree of Freedom for Soft Computing Applications. US 2004/0039555 Al.
- Ulyanov, V., 2001. Modelirovanie Negolonomnykh, Sushchestvenno Nelineinykh Dinamicheskikh Sistem S Ispol'zovaniem Metodov Myagkikh Vychislenii, S Prilozheniyami [Modeling Nonholonomic, Essentially Nonlinear Dynamical Systems Using Soft Computing Methods, With Applications]. PhD. Tver State University.
- Ulyanov, V. and Yazenin, A., 2001. Matematicheskaya model' intellektual'noi sistemy upravleniya kompleksnym, global'no neustoichivym ob"ektom na osnove myagkikh vychislenii [A soft computing-based mathematical model of an intelligent control system for a complex, globally unstable object]. Proceedings of the RAS. Theory and control systems, 3, pp.122-137.
- Ulyanov, S., 2011. Self-Organization Quantum Robust Control Methods for Situations with Uncertainty and Risk. US No 2013 / 0096698 A1.
- Tribus, M., Shannon, P. and Evans, R., 1966. Why thermodynamics is a logical consequence of information theory. AIChE Journal, 12(2), pp.244-248.
- Bais, F. and Farmer, J., 2009. Physics of information. In: J. van Benthem and P. Adriaans, ed., The Handbook on the philosophy of information. Amsterdam: Elsevier, pp.609-683.
- Ulyanov, S. and et al., 2018. Basic relations of quantum information theory Pts 1&2. System Analysis in Science and Education, 1.
- Cheng, H., Li, G. and Hsieh, M., 2018. Properties Of Noncommutative Renyi And Augustin Information. [online] arXiv.org. Available at: <https://arxiv.org/abs/1811.04218> [Accessed 1 December 2019].
- Dupuis, F. and Wilde, M., 2016. Swiveled Rényi entropies. Quantum Information Processing, 15(3), pp.1309-1345.
- Ulyanov, S. and et al., 2010. Logicheskie i kvantovye paradoksy intellektual'nykh kvantovykh i myagkikh vychislenii [Logical and quantum paradoxes of quantum and soft computational intelligence]. Sistemnyi analiz v nauke i obrazovanii [System analysis in science and education], 2.
- Wilson, S., Gameros, R., Sheely, M., Lin, M., Dover, K., Gevorkyan, R., Haberland, M., Bertozzi, A. and Berman, S., 2016. Pheeno, A Versatile Swarm Robotic Research and Education Platform. IEEE Robotics and Automation Letters, 1(2), pp.884-891.
- Pickem, D., Wang, L., Glotfelter, P., Diaz-Mercado, Y., Mote, M., Ames, A., Feron, E. and Egerstedt, M., 2020. Safe, Remote-Access Swarm Robotics Research On The Robotarium. [online] arXiv.org. Available at: <https://arxiv.org/abs/1604.00640> [Accessed 1 December 2019].
- Ulyanov, S., Reshetnikov, A. and Reshetnikov, G., 2015. Tekhnologii Intellektual'nykh Vychislenii: Kvantovye Vychisleniya I Programmirovanie V Samoorganizuyushchikhsya Intellektual'nykh Sistemakh Upravleniya [Intelligent Computing Technologies: Quantum Computing And Programming In Self-Organizing Intelligent Control Systems]. Dubna, Russia: JINR University Centre Publ.
- Petrov, B. and et al., 1982. Problemy Upravleniya Kvantovymi I Relyativistskimi Dinamicheskimi Sistemami [Problems of Control of Quantum and Relativistic Dynamical Systems]. Moscow: Nauka Publ.
- Sagawa, T. and Ueda, M., 2011. Erratum: Minimal Energy Cost for Thermodynamic Information Processing: Measurement and Information Erasure [Phys. Rev. Lett.102, 250602 (2009)]. Physical Review Letters, 106(18).
- Horowitz, J. and Sandberg, H., 2014. Second-law-like inequalities with information and their interpretations. New Journal of Physics, 16(12), p.125007.