Sergey V. Ulyanov
Doctor of Physical and Mathematical Sciences, Dubna State University, Institute of the System Analysis and Management, Professor, 19, Universitetskaya ul., Dubna, Moscow region, 141980, Russia, tel.: +7(49621)66010, This email address is being protected from spambots. You need JavaScript enabled to view it.
Andrey G. Reshetnikov
PhD in Technical Sciences, Dubna State University, Institute of the System Analysis and Management, Assistant Professor, 19, Universitetskaya ul., Dubna, Moscow region, 141980, Russia, tel.: +7(49621)66010, This email address is being protected from spambots. You need JavaScript enabled to view it.
Alexey V. Nemchaninov *
Dubna State University, Institute of the System Analysis and Management, Second Year Master Student, 19, Universitetskaya ul., Dubna, Moscow region, 141980, Russia, tel.: +7(962)249-65-76, This email address is being protected from spambots. You need JavaScript enabled to view it.
Received 19 November 2019
Abstract
Design principles for quantum cognitive intelligent control system applying the neurocomputer interface «brain-computer-device» (BCI) and the application of mental commands are considered. The possibility of implementation of the principles of applying an emotional regulator for design a cognitive prosthesis control system is also considered. A hierarchical intelligent control system based on the Q/SCOptKBTM knowledge base optimizer using soft and quantum computing technologies is described.
Key words
Robotic prosthetic arm, intelligent cognitive computing, «brain-computer-device» neurointerface, mental commands, quantum soft computing, cognitive controller.
DOI
https://doi.org/10.31776/RTCJ.8105
Bibliographic description
Ulyanov, S., Reshetnikov, A. and Nemchaninov, A. (2020). Cognitive intelligent control of a robotic prosthesis arm. Part 2. Robotics and Technical Cybernetics, 8(1), pp.41-52.
UDC identifier:
004.415:007.51:617.57-77
References
- Miranda, R., Casebeer, W., Hein, A., Judy, J., Krotkov, E., Laabs, T., Manzo, J., Pankratz, K., Pratt, G., Sanchez, J., Weber, D., Wheeler, T. and Ling, G. (2015). DARPA-funded efforts in the development of novel brain–computer interface technologies. Journal of Neuroscience Methods, 244, pp.52-67.
- Sberbank Robotic Lab. (2019). An analytical review of the global robotics market. p.272.
- Yang, G., Bellingham, J., Dupont, P., Fischer, P., Floridi, L., Full, R., Jacobstein, N., Kumar, V., McNutt, M., Merrifield, R., Nelson, B., Scassellati, B., Taddeo, M., Taylor, R., Veloso, M., Wang, Z. and Wood, R. (2018). The grand challenges of Science Robotics. Science Robotics, 3(14), p.eaar7650.
- Sberbank Robotic Lab. (2018). An analytical review of the global robotics market. p.79.
- Sberbank (2019). Artificial Intelligence: Approaches to Formation. AI development strategies in the Russian Federation.
- Purves, D. et al. (2001). Neuroscience – Sinauer Associates.
- Moren, J. (2002). Emotion and Learning – A Computational Model of the Amygdala. Lund, Sweden: Lund University Publ.
- Moren, J. and Balkenius, C. (2000). A Computational Model of Emotional Learning in the Amygdala. Cybernetics and Systems, 32(6), pp.611-636.
- Lucas, C., Shahmirzadi, D. and Sheikholeslami, N. (2004). Introducing BELBIC: Brain Emotional Learning Based Intelligent Controller. International Journal of Intelligent Automation and Soft Computing, 10(1), pp.11-22.
- Rouhani, H., Jalili, M., Araabi, B., Eppler, W. and Lucas, C. (2007). Brain emotional learning based intelligent controller applied to neuro-fuzzy model of micro-heat exchanger. Expert Systems with Applications, 32, pp.911-924.
- Shahmirzadi, D. (2005). Computational Modeling of the Brain Limbic System and its Application In Control Engineering, U.S.A.: Texas A&M University Publ.
- Reza Keramat, Mohammad Hosein Ershadi and Shahrokh Shojaeian (2019). A Comparison of Fuzzy and Brain Emotional Learning-Based Intelligent Control Approaches for a Full Bridge DC-DC Converter. International Journal of Industrial Electronics. Control and Optimization, 2(3), pp.197-206.
- Rao, R. (2019). Towards neural co-processors for the brain: combining decoding and encoding in brain–computer interfaces. Current Opinion in Neurobiology, 55, pp.142-151.
- Millán, J., Ferrez, P. and Buttfield, A. (n.d.). Non Invasive Brain-Machine Interfaces, IDIAP Research Institute.
- Maksimenko, V., Kurkin, S., Pitsik, E., Musatov, V., Runnova, A., Efremova, T., Hramov, A. and Pisarchik, A. (2018). Artificial Neural Network Classification of Motor-Related EEG: An Increase in Classification Accuracy by Reducing Signal Complexity. Complexity, 2018, pp.1-10.
- Ulyanov, S. (2005). Soft computing optimizer of intelligent control system structures. US patent no.7,219,087B2.
- Ulyanov, S. (2006). System for soft computing simulation. US patent no.2006,0218A1.
- Ulyanov, S. (2013). Intelligent self-organized robust control design based on quantum / soft computing technologies and Kansei engineering. Computer Science Journal of Moldova, 21(2(62), pp.242-279.
- Nikolaeva, A., Barkhatova, I. and Ul’yanov, S. (2014). Intelligent robust control of an autonomous robot-manipulator. Software systems and computational methods, 1, pp.34-62.
- Ulyanov, S., Reshetnikov, A. and Tyatyushkina, O. (2019). Intellektual'naya robototekhnika ch. 2: sotsio - ekonomiko - tekhnicheskaya platforma kognitivnogo obrazovatel'nogo protsessa [Intellectual robotics, part 2: socio-economic-technical platform of the cognitive educational process]. Journal of Systems Analysis in Science and Education, 4. (in Russian).
- Yanagisawa, K., Tsunashima, H. and Sakatani, K. (2012). Brain-Computer Interface Using Near-Infrared Spectroscopy for Rehabilitation. Infrared Spectroscopy - Life and Biomedical Sciences.
- Vaughan, T., Mcfarland, D., Schalk, G., Sarnacki, W., Krusienski, D., Sellers, E. and Wolpaw, J. (2006). The Wadsworth BCI Research and Development Program: At Home With BCI. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 14(2), pp.229-233.
- Ulyanov, S. and Reshetnikov, A. (2016). Bazis kognitivnogo komp'yuternogo obucheniya robototekhnike. Intellektual'nyy trenazher formirovaniya aktivnykh znaniy [Basis of cognitive computer training in robotics. Intellectual simulator for the formation of active knowledge]. Journal of Systems Analysis in Science and Education, 4. (in Russian).
- Tarasov, V. (2002). Ot Mnogoagentnykh Sistem do Intellektual'nykh Organizatsiy: Filosofiya, Psikhologiya, Informatika [From Multi-Agent Systems to Intelligent Organizations: Philosophy, Psychology, Computer Science]. Moscow: URSS editorial Publ., P.352. (in Russian).
- Zaitsev, A., Kureichik, V. and Polupanov, A. (2010). Obzor metodov evolyutsionnoy optimizatsii na osnove royevogo intellekta [Overview of evolutionary optimization techniques based on swarm intelligence]. News SFU. Technical science, 12. (in Russian).
- Kureichik, V. and Kazharov, A. (2011). Ispol'zovaniye royevogo intellekta pri reshenii slozhnykh zadach [The use of swarm intelligence in solving difficult problems]. News SFU. Technical science, 7. (in Russian).
- Sandberg, H. et al. (2014). Maximum work extraction and implementation costs for nonequilibrium Maxwell’s demon. Physical Review E., 4, pp.042119.
- Chatzis, S., Korkinof, D. and Demiris, Y. (2012). A quantum-statistical approach toward robot learning by demonstration. IEEE Transactions on Robotics, 28(6), pp.1371-1381.
- Sagawa, T. and Ueda, M. (2011). Minimal Energy Cost for Thermodynamic Information Processing: Measurement and Information Erasure. Phys. Rev. Lett., 102(25), pp.250602.
- Horowitz, J. and Sandberg, H. (2014). Second-law-like inequalities with information and their interpretations. New Journal of Physics, 16, pp.125007.
- Ulyanov, S., Reshetnikov, A., Mamaeva, A. and et al. (2010). Gibridnye kognitivnye sistemy ypravleniya na primere upravleniya transportnym sredstvom [Hybrid cognitive control systems on the example of driving]. Journal of Systems Analysis in Science and Education, 3. (in Russian).
- Ulyanov, S., Reshetnikov, A. and Nemchaninov, A. (2019). Cognitive intelligent control of a robotic prosthesis arm. Part 1. Robotics and Technical Cybernetics, 7(4), pp.306-317. (in Russian).
- Musallam, S. (2004). Cognitive Control Signals for Neural Prosthetics. Science, 305(5681), pp.258-262.
- Amirova, É., Efimov, V., Kuzhekin, A., Lunina, N., Slepchenko, A., Ul'yanov, S., Khanukaev, A., Shakhnazarov, M., Shakhnazarova, I. and Shishkin, B. (1991). Expert system for selecting lower-extremity (thigh) prostheses and diagnosis of the quality of artificial replacement. Part I. Biomedical Engineering, 25(3), pp.118-126.
- Amirova, É., Efimov, V., Kuzhekin, A., Lunina, N., Slepchenko, A., Ul'yanov, S., Khanukaev, A., Shakhnazarov, M., Shakhnazarova, I. and Shiskhin, B. (1991). An expert system for selection of lower extremity (thigh) prosthesis and evaluation of prosthetic quality (part II). Biomedical Engineering, 25(6), pp.270-281.
- Gandhi, V. (2015). Brain-computer interfacing for assistive robotics. New York: Academic Press.