Adaptive estimation of friction parameters in multilink legged robots using the dynamic regressor extension and mixing

Adaptive estimation of friction parameters in multilink legged robots using the dynamic regressor extension and mixing

Nikita V. Mikhalkov
Postgraduate Student, ITMO University, 49-A, Kronverksky pr., Saint Petersburg, 197101, Russia, This email address is being protected from spambots. You need JavaScript enabled to view it., ORCID: 0000-0003-2723-1610

Anton A. Pyrkin
Doctor of Technical Sciences, Professor, ITMO University, Dean of Faculty of Control Systems and Robotics, Professor, Leading Research Scientist, 49-A, Kronverksky pr., Saint Petersburg, 197101, Russia, This email address is being protected from spambots. You need JavaScript enabled to view it., ORCID: 0000-0001-8806-4057


Received November 05, 2024

Abstract
This paper presents a method for adaptive friction parameter estimation in multilink legged robots. The relevance of this approach lies in the need to account for changes in joint friction parameters due to factors such as temperature fluctuations and wear. The proposed method, based on the dynamic regressor extension and mixing (DREM) technique and leveraging the specifics of legged motion, enables stable friction parameter estimation while avoiding computational complexities and the need for additional sensors, as seen in traditional methods. Simulation on a seven-link robotic system demonstrated convergence of the estimates to true values, even in the presence of noise and delays.

Key words
Adaptive parameter estimation, legged robots, friction parameter estimation.

Acknowledgements
Supported by the Ministry of Science and Higher Education of the Russian Federation (project no. FSER-2025-0002).

EDN
APWUMW

Bibliographic description
Mikhalkov, М.V. and Pyrkin, А.А. (2024), "Adaptive estimation of friction parameters in multilink legged robots using the dynamic regressor extension and mixing", Robotics and Technical Cybernetics, vol. 13, no. 1, pp. 18-25, EDN: APWUMW. (in Russian).

UDC identifier
539.62:007.52

References

  1. Bledt, G., Wensing, P.M. and Kim, S. (2017), “Policy-regularized model predictive control to stabilize diverse quadrupedal gaits for the MIT cheetah”, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, pp. 4102-4109.
  2. Gaertner, M., Bjelonic, M., Farshidian, F. and Hutter, M. (2021), “Collision-free MPC for legged robots in static and dynamic scenes”, 2021 IEEE International Conference on Robotics and Automation (ICRA)”, IEEE, pp. 8266-8272.
  3. Gong, Y., Hartley, R., Da, X., Hereid, A. et al. (2019), “Feedback control of a Cassie bipedal robot: Walking, standing, and riding a Segway”, American Control Conference (ACC), EEE, pp. 4559-4566.
  4. Hutter, M., Gehring, C., Jud, D., Lauber, A. et al. (2016), “ANYmal – a highly mobile and dynamic quadrupedal robot”, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, pp. 38-44.
  5. Bittencourt, A.C., Wernholt, E., Sander-Tavallaey, S. and Brogårdh, T. (2010), “An extended friction model to capture load and temperature effects in robot joints”, IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, pp. 6161-6167.
  6. Jin, M., Kang, S.H. and Chang, P.H. (2008), “Robust compliant motion control of robot with nonlinear friction using time-delay estimation”, IEEE Transactions on Industrial Electronics, vol. 55, no. 1, pp. 258-269.
  7. Dong, J., Xu, J., Zhou, Q., Zhu, J. et al. (2021), “Dynamic identification of industrial robot based on nonlinear friction model and LS-SOS algorithm”, IEEE Transactions on Instrumentation and Measurement, vol. 70, pp. 1-12.
  8. Lee, T., Wensing, P.M. and Park, F.C. (2020), “Geometric robot dynamic identification: A convex programming approach”, IEEE Transactions on Robotics, vol. 36, no. 2, pp. 348-365, DOI: 10.1109/TRO.2019.2926491.
  9. Hashlamon, I. and Erbatur, K. (2016), “Joint friction estimation for walking bipeds”, Robotica, vol. 34, no. 7, pp. 1610-1629.
  10. Yabu, S., Shimizu, K., Morita, M., Kawashima, N. et al. (2023), “Estimation of Ground Reaction Force Using Carbon Insoles with Piezoelectric Film Sensors and Force Sensing Resistors”, IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 4355-4360.
  11. Kim, S.S. and Vanderploeg, M.J. (1986), “QR decomposition for state space representation of constrained mechanical dynamic systems”, J. Mech. Des., pp. 183-188.
  12. Mistry, M., Buchli, J. and Schaal, S. (2010), “Inverse dynamics control of floating base systems using orthogonal decomposition”, IEEE International Conference on Robotics and Automation, pp. 3406-3412.
  13. Morse, A. (1980), “Global stability of parameter-adaptive control systems”, IEEE Transactions on Automatic Control, vol. 25, no. 3, pp. 433-439.
  14. Ljung, L. (1999), System Identification – Theory for the User, 2nd ed., Upper Saddle River, NJ: PTR Prentice Hall.
  15. Aranovskiy, S., Bobtsov, A., Ortega, R. and Pyrkin, A. (2016). “Performance enhancement of parameter estimators via dynamic regressor extension and mixing”, IEEE Transactions on Automatic Control, vol. 62, no. 7, pp. 3546–3550.
  16. Korotina, M., Aranovskiy, S., Ushirobira, R. and Vedyakov, A. (2020), “On parameter tuning and convergence properties of the DREM procedure”, European Control Conference (ECC), IEEE, pp. 53-58.