Development of architecture and generalized modules structure for robotic complexes distributed control system for different applications

Development of architecture and generalized modules structure for robotic complexes distributed control system for different applications

Konstantin D. Krestovnikov
Saint Petersburg Federal Research Center of the Russian Academy of Sciences,  Saint Petersburg Institute for Informatics and Automation of the Russian Academy of Sciences (SPIIRAS), Laboratory of Autonomous Robotic Systems, Postgraduate Student, Junior Research Scientist, 39, 14 line V.O., Saint Petersburg, 199178, Russia, This email address is being protected from spambots. You need JavaScript enabled to view it., ORCID: 0000-0001-6303-0344

Aleksei A. Erashov
Saint Petersburg Federal Research Center of the Russian Academy of Sciences, SPIIRAS, Laboratory of Big Data Technologies in Socio-Cyberphysical Systems, Postgraduate Student, Junior Research Scientist, 39, 14 line V.O., Saint Petersburg, 199178, Russia, This email address is being protected from spambots. You need JavaScript enabled to view it., ORCID: 0000-0001-8003-3643


Received June 21, 2022

Abstract
The autonomous robotic complexes allow solving a wide range of scientific, civil and military tasks. In order to work correctly, these complexes have to include a number of heterogeneous functional systems in its composition. The implementation of these systems requires a significant number of separate modules and devices that makes it relevant to develop new approaches to the organization of control systems that correspond to complexity of the object. This work is aimed at the development of distributed control systems for robotic complexes. This paper presents the architecture of the distributed and centralized control system, also the generalized modules structure for its realization. The proposed architecture consists of three levels and it can be used for autonomous robotic complexes and unmanned vehicles for different applications. The generalized structure of the modules allows developing typical circuit solutions for sensor and actuating modules of the system. The control system of the mobile autonomous robotic platform for general purposes was developed and realized based on the proposed architecture. In this robotic complex the CANbus is used as internal system communication bus, through that the data exchange is accomplished between modules of devices level and high-level controller. The devices level of the robotic platform includes fourteen modules, including the modules of the motor-wheels control, in the example of that the application of the proposed generalized structure was considered.

Key words
Distributed control system, architecture of control system, robot control system, modules structure.

DOI
10.31776/RTCJ.10305

Bibliographic description
Krestovnikov, K.D., Erashov, A.A., 2022. Development of architecture and generalized modules structure for robotic complexes distributed control system for different applications. Robotics and Technical Cybernetics, 10(3), pp.201-212.

UDC identifier:
681.5

References 

  1. Chebotareva, E. et al., 2020. Person-following algorithm based on laser range finder and monocular camera data fusion for a wheeled autonomous mobile robot. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12336, pp.21-33. DOI: 10.1007/978-3-030-60337-3_3.
  2. Medvedev, M., Kostjukov, V. and Pshikhopov, V., 2021. Metod optimizacii traektorii mobil'nogo robota v pole istochnikov-repellerov [Method for optimizing of mobile robot trajectory in repeller sources field]. Informatika i Avtomatizatsiya [Informatics and Automation], 20(3), pp.690-726. DOI: 10.15622/ia.2021.3.7. (in Russian).
  3. Erashov, A. et al., 2021. Metod ocenki vremeni besprovodnoj peredachi jenergeticheskih resursov mezhdu dvumja robotami [Method for estimating time of wireless transfer of energy resources between two robots]. Informatika i Avtomatizatsiya [Informatics and Automation], 20(6), pp.1279-1306. DOI: 10.15622/ia.20.6.4. (in Russian).
  4. Bai, Y. et al., 2021. Adaptive multi-agent coverage control with obstacle avoidance. IEEE Control Systems Letters, 6, pp.944-949. DOI: 10.1109/LCSYS.2021.3087609.
  5. Li, Z. et al., 2019. A fault-tolerant method for motion planning of industrial redundant manipulator. IEEE transactions on industrial informatics, 16(12), pp.7469-7478. DOI: 10.1109/TII.2019.2957186.
  6. Iakovlev, R. and Saveliev, A., 2020. Approach to implementation of local navigation of mobile robotic systems in agriculture with the aid of radio modules. Telfor Journal, 12(2), pp.92-97. DOI: 10.5937/telfor2002092I.
  7. Sevostyanova, N. et al., 2021. Innovacionnyj podhod k avtomatizirovannoj fotoaktivacii posevnyh ploshhadej posredstvom BpLA s cel'ju stimuljacii rosta kul'tur [An innovative approach to automated photo-activation of crop acreage using uavs to stimulate crop growth]. Informatika i Avtomatizatsiya [Informatics and Automation], 20(6), pp.1395-1417. DOI: 10.15622/ia.20.6.8. (in Russian).
  8. Shabalina, K. et al., 2018. Comparing fiducial markers performance for a task of a humanoid robot self-calibration of manipulators: A pilot experimental study. In: International Conference on Interactive Collaborative Robotics, pp.249-258. DOI: 10.1007/978-3-319-99582-3_26.
  9. Balabanov, A., Bezuglaya, A. and Shushlyapin, E., 2021. Upravlenie manipuljatorom podvodnogo robota [Underwater robot manipulator control]. Informatika i Avtomatizatsiya [Informatics and Automation], 20(6), pp.1307-1332. DOI: 10.15622/ia.20.6.5. (in Russian).
  10. Gao, Y. and Chien, S., 2017. Review on space robotics: Toward top-level science through space exploration. Science Robotics, 2(7), eaan5074. DOI: 10.1126/scirobotics.aan5074.
  11. Pavlov, I.U., Koloskov, V.L. and Ivanov, E.B., 2016. Analiz centralizovannyh i decentralizovannyh sistem avtomatizirovannogo upravlenija «Intellektual'nym» domom [Analysis of centralized and decentralized automated control systems for controlling «Intelligence» building]. Novye Informacionnye Tehnologii v Avtomatizirovannyh Sistemah [New Information Technologies in Automated Systems], 19, pp.338-340. Available at: <https://cyberleninka.ru/article/n/analiz-tsentralizovannyh-i-detsentralizovannyh-sistem-avtomatizirovannogo-upravleniya-intellektualnym-domom> (Accessed 24 June 2022). (in Russian).
  12. Bakule, L., 2014. Decentralized control: Status and outlook. Annual Reviews in Control, 38(1), pp.71-80. DOI: 10.1016/j.arcontrol.2014.03.007.
  13. Weiner, M. et al., 2014. Design of a low-latency, high-reliability wireless communication system for control applications. In: 2014 IEEE International conference on communications (ICC), pp.3829-3835. DOI: 10.1109/ICC.2014.6883918.
  14. Krestovnikov, K.D., Erashov, A.A. and Bykov A.N., 2021. Masshtabiruemaja arhitektura i struktura modulej raspredelennoj sistemy upravlenija processami promyshlennyh teplichnyh kompleksov [Scalable architecture and structure of modules for distributed process control system in industrial greenhouse complexes]. Mekhatronika, Avtomatizatsiya, Upravlenie [Mechatronics, automation, control], 22(10), pp.527-536. DOI: 10.17587/mau.22.527-536. (in Russian).
  15. Laengle, T. et al., 1997. A distributed control architecture for autonomous mobile robots-implementation of the karlsruhe multi-agent robot architecture (KAMARA). Advanced Robotics, 12(4), pp.411-431. DOI: 10.1163/156855398X00271.
  16. Brooks, R.A. and Connell, J.H., 1987. Asynchronous distributed control system for a mobile robot. In: Mobile Robots I, 727, pp.77-84. DOI: 10.1117/12.937785.
  17. Vlasov, A. and Yudin, A., 2010. Distributed control system in mobile robot application: general approach, realization and usage. In: International Conference on Research and Education in Robotics, pp.180-192, Springer, Berlin, Heidelberg. DOI: 10.1007/978-3-642-27272-1_16.
  18. Yu, Z., et al., 2014. Design and development of the humanoid robot BHR-5. Advances in Mechanical Engineering, 6, pp.852937. DOI: 10.1155/2014/852937.
  19. Ogura, Y. et al., 2006. Development of a new humanoid robot WABIAN-2. In: Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006, pp.76-81. DOI: 10.1109/ROBOT.2006.1641164.
  20. Lohmeier, S., 2010. Design and realization of a humanoid robot for fast and autonomous bipedal locomotion. Technische Universität München. Available at: <https://mediatum.ub.tum.de/doc/980754/file.pdf> (Accessed 24 June 2022).
  21. SERCOS the automation bus, u.d. Sercos Technology: Prove, Easy, Fast, Open. Available at: <https://www.sercos.org/technology/sercos-i-and-ii/> (Accessed 24 June 2022).
  22. Ziebinski, A., Cupek, R. and Piech, A., 2018. Distributed control architecture for the autonomous mobile platform. In: AIP Conference Proceedings, 2040(1), pp.080012. DOI: 10.1063/1.5079146.
  23. Andreev, V.P., Kim, V.L. and Jeprikov, S.R., 2020. Apparatno-programmnyj frejmvork dlja razrabotki modul'nyh mobil'nyh robotov s ierarhicheskoj arhitekturoj [Hardware-software framework for development mobile modular robots with hierarchical architecture]. Izvestija Juzhnogo federal'nogo universiteta. Tehnicheskie nauki [Izvestiya SFedU. Engineering Sciences], 1(211). Available at: <https://cyberleninka.ru/article/n/apparatno-programmnyy-freymvork-dlya-razrabotki-modulnyh-mobilnyh-robotov-s-ierarhicheskoy-arhitekturoy> (Accessed 24 June 2022). (in Russian).
  24. Wołoszczuk, A., Andrzejczak, M. and Szynkarczyk, P., 2007. Architecture of mobile robotics platform planned for intelligent robotic porter system-IRPS project. Journal of Automation Mobile Robotics and Intelligent Systems, 1, pp.59-63. Available at: <https://yadda.icm.edu.pl/yadda/element/bwmeta1.element.baztech-article-BUJ6-0014-0024/c/httpwww_jamris_org032007saveas_phpquestjamrisno032007p59-63.pdf> (Accessed 24 June 2022).
  25. Rohmer, E. et al., 2010. Quince: A collaborative mobile robotic platform for rescue robots research and development. In: The Abstracts of the international conference on advanced mechatronics: toward evolutionary fusion of IT and mechatronics, pp.225-230. DOI: 10.1299/jsmeicam.2010.5.225.