Implementation of the trajectory controller based on model predictive controlfor unmanned ground vehicle

Implementation of the trajectory controller based on model predictive controlfor unmanned ground vehicle

Alexander A. Tachkov
PhD in Technical Sciences, Federal State Budgetary Educational Institution of Higher Education «Bauman Moscow State Technical University» (BMSTU), Science and Educational Center «Robotics», Department «Automated transport systems», Head of Department, 7, Izmaylovskaya pl., Moscow, 105037, Russia, This email address is being protected from spambots. You need JavaScript enabled to view it., ORCID: 0000-0002-8330-8750

Alexey V. Kozov
BMSTU, Science and Educational Center «Robotics», Department «Automated transport sys-tems», Engineer, 7, Izmaylovskaya pl., Moscow, 105037, Russia, This email address is being protected from spambots. You need JavaScript enabled to view it., ORCID: 0000-0002-9997-0386

Semion Yu. Kurochkin
BMSTU, Science and Educational Center «Robotics», Department «Automated transport systems», Junior Research Scientist, 7, Izmaylovskaya pl., Moscow, 105037, Russia, This email address is being protected from spambots. You need JavaScript enabled to view it., ORCID: 0000-0001-8659-7191

Dmitriy S. Iakovlev
BMSTU, Science and Educational Center «Robotics», Department «Automated transport systems», Engineer, 7, Izmaylovskaya pl., Moscow, 105037, Russia, This email address is being protected from spambots. You need JavaScript enabled to view it., ORCID: 0000-0002-6999-407X

Nikita A. Buzlov
BMSTU, Science and Educational Center «Robotics», Department «Automated transport sys-tems», Engineer, 7, Izmaylovskaya pl., Moscow, 105037, Russia, This email address is being protected from spambots. You need JavaScript enabled to view it., ORCID: 0000-0002-0723-6812


Received 30 September 2021

Abstract
This paper is devoted to one implementation of a trajectory controller based on model predictive control for an un-manned ground vehicle (UGV). The statement of the problem of autonomous movement along a given trajectory, the assumptions and restrictions adopted are presented. The features of the application of model predictive control for solving the problem are described. A feature of the proposed implementation of the trajectory controller is the use of a linearized chassis dynamics model to predict the position of the robot after a given period of time and control the movement without solving the optimal control problem. To determine the parameters of the dynamic model of the robotic complex, taking into account the drive level, the identification problem was solved, as a result of which two linear models with delay were obtained, describing the dynamics of the longitudinal movement and rotation of the robot. The experiment showed that the obtained models provide high compliance with experimental data, while the robot moves on a surface with a constant coefficient of friction. An algorithm for calculating the predicted position, a block diagram of the trajectory controller and its software implementation are described. The implemented trajectory controller provides autonomous movement of an UGV in an industrial-urban environment or in slightly rugged terrain.

Key words
Unmanned ground vehicle, UGV, navigation, ROS, model predictive control, system identification, control system synthesis, trajectory following, dynamics model.

DOI
10.31776/RTCJ.10105

Bibliographic description
Tachkov, A. et al., 2022. Implementation of the trajectory controller based on model predictive controlfor unmanned ground vehicle. Robotics and Technical Cybernetics, 10(1), pp.43-54.

UDC identifier:
681.51:62-503.54

References 

  1. Miroshnik, I.V. and Shalaev, A.N., 2002. Upravlenie traektornym dvizheniem avtonomnykh robotov [Trajectory motion control for autonomous robots]. Nauchno-tekhnicheskiy vestnik informatsionnykh tekhnologiy, mekhaniki i optiki [Scientific and technical bulletin of information technologies, mechanics and optics], 6, pp.237-242. (in Russian). 

  2. Burdakov, S.F., Miroshnik, I.V. and Stelmakov, R.E., 2001. Sistemy Upravleniya Dvizheniem Kolesnykh Robotov  [Motion Control Systems for Wheeled Robots]. St. Petersburg: Nauka Publ., p.232. (in Russian). 

  3. Gerasimov, V.N., 2014. To the problem of mobile robot motion control in the dynamic environment. Robotics and Technical Cybernetics, 1, pp.44-51. (in Russian). 

  4. Snider, J.M., 2009. Automatic Steering Methods for Autonomous Automobile Path Tracking. Tech. Rep. CMU-RITR-09-08. Robotics Institute, Pittsburgh, PA, p.71. 

  5. Campo, P.J. and Morari, M., 1987. Robust model predictive control. In: 1987 IEEE American Control Conference, pp.1021-1026. 

  6. Kobzev, A.A., Nemontov, V.A., Mishulin, Yu.E. and Lekareva, A.V., 2016. Postanovka zadachi prognoziruyushchego upravleniya mobil'nym gusenichnym robotom [Statement of the problem of predictive control of a mobile crawler robot]. Izvestiya Instituta inzhenernoy fiziki [Proceedings of the Institute of Engineering Physics], 4(42), pp.58-64. (in Russian). 

  7. Künhe, F., Gomes, J. and Fetter, W., 2005. Mobile robot trajectory tracking using model predictive control. II IEEE latin-american robotics symposium, 51. Available at: <http://www.ece.ufrgs.br/~fetter/sbai05_10022.pdf> (Accessed 19 January 2022). 

  8. Raffo, G.V. et al., 2009. A predictive controller for autonomous vehicle path tracking. IEEE transactions on intelligent transportation systems, 10(1), pp.92-102. DOI: 10.1109/TITS.2008.2011697. Available at: <https://ieeexplore.ieee.org/document/4768725> (Accessed 19 January 2022).

  9.  Rajamani, R., 2011. Vehicle Dynamics and Control. Springer Science & Business Media, p.498. 

  10. Kiencke, U. and Nielsen, L., 2000. Automotive Control Systems: for Engine, Driveline, and Vehicle. Springer-Verlag Berlin Heidelberg, p.512. 

  11. Inagaki, S., Kushiro, I. and Yamamoto, M., 1995. Analysis on vehicle stability in critical cornering using phase-plane method. Jsae Review, 2(16), p.216. 

  12. Li, S. E., Deng, K., Zheng, Y. and Peng, H., 2015. Effect of pulse and glide strategy on traffic flow for a platoon of mixed automated and manually driven vehicles. Computer Aided Civil and Infrastructure Engineering, 30(11). DOI: 10.1111/MICE.12168. Available at: <https://onlinelibrary.wiley.com/journal/14678667> (Accessed 19 January 2022). 

  13. Kondakov, S.V. and Cherepanov, S.I., 2008. Modelirovanie vzaimodeystviya gusenits s gruntom pri neustanovivshemsya povorote bystrokhodnoy gusenichnoy mashiny [Modeling the interaction of tracks with the ground during an unsteady turn of a high-speed tracked vehicle]. Vestnik Yuzhno-Ural'skogo gosudarstvennogo universiteta. Seriya: Mashinostroenie [Bulletin of the South Ural State University. Series: Engineering], 23(123), pp.26-31. (in Russian).

  14. Zabavnikov, N.A., 1975. Osnovy Teorii Transportnykh Gusenichnykh Mashin. Tom 4 [Fundamentals of the Theory of Transport Tracked Vehicles. Volume 4]. Moscow: Mashinostroenie Publ., p.448. (in Russian). 

  15. Rohani, B. and Baladi, G.Y., 1982. Steerability Analysis of Tracked Vehicles on Soft Soil: Theoretical Predictions Versus Field Measurements. Vicksburg, Miss. : The Station. 

  16. Santini, S. et al., 2016. A Consensus-Based approach for platooning with intervehicular communications and its validation in realistic scenarios. IEEE Transactions on Vehicular Technology, 66(3), p.1985–1999. DOI: 10.1109/TVT.2016.2585018. Available at: <https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7499858> (Accessed 19 January 2022). 

  17. Xiao, L. and Gao, F., 2011. Practical string stability of platoon of adaptive cruise control vehicles. IEEE Transactions on intelligent transportation systems, 12(4), pp.1184-1194. DOI: 10.1109/TITS.2011.2143407. Available at: <https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5782989> (Accessed 19 January 2022). 

  18. Öncü, S., Ploeg, J., van de Wouw, N. and Nijmeijer, H., 2014. Cooperative adaptive cruise control: Network-aware analysis of string stability. IEEE Transactions on Intelligent Transportation Systems, 15(4), pp.1527-1537. DOI: 10.1109/TITS.2014.2302816. Available at: <https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6747309> (Accessed 19 January 2022). 

  19. James, S. and Anderson, S. R., 2018. Linear system identification of longitudinal vehicle dynamics versus nonlinear physical modelling. In: 2018 UKACC 12th International Conference on Control (CONTROL), pp.146-151. DOI: 10.1109/CONTROL.2018.8516756. Available at:<https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8516756> (Accessed 19 January 2022).

  20. Milanés, V. et al., 2013. Cooperative adaptive cruise control in real traffic situations. IEEE Transactions on intelligent transportation systems, 15(1), pp.296-305. DOI: 10.1109/TITS.2013.2278494.Available at: <https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6588305> (Accessed 19 January 2022). 

  21. Van Overschee, P. and De Moor, B., 1994. N4SID: Subspace algorithms for the identification of combined deterministic-stochastic systems. Automatica, 30(1), pp.75-93.

Editorial office address: 21, Tikhoretsky pr., Saint-Petersburg, Russia, 194064, tel.: +7(812) 552-13-25 e-mail: zheleznyakov@rtc.ru