ROBOT CONTROL WITH BRAIN-COMPUTER INTERFACE

ROBOT CONTROL WITH BRAIN-COMPUTER INTERFACE

L.A. Stankevich
PhD in Technical Sciences, Peter the Great Saint-Petersburg Polytechnical University (SPbPU), Associate Professor, Professor of System Analysis and Control Faculty, 29, Politekhnicheskaya ul., Saint-Petersburg, 195251, Russia, tel.: +7(911)751-16-56, This email address is being protected from spambots. You need JavaScript enabled to view it.

F.V. Gundelakh
SPbPU, Postgraduate Student, 29, Politekhnicheskaya ul., Saint-Petersburg, 195251, Russia, tel.: +7(911)028-12-20, This email address is being protected from spambots. You need JavaScript enabled to view it.


Abstract
A new approach to supervisory control of a robot based on the non-invasive brain-computer interface, that provides decoding of brain activity signals during imagining supervisory motion control commands for robot, is considered. Solving this problem is important for rehabilitation and services for people with disabilities. To tune the control system, biological feedback is used. This kind of human-robot interaction was demonstrated by the example of supervisory control of the Nao robot.

Key words
Brain-computer interface, neural networks, support vector machine, supervisory control of the robot, biofeedback.

Bibliographic description
Stankevich, L. and Gundelakh, F. (2017). Robot Control with Brain-Computer Interface. Robotics and Technical Cybernetics, 2(15), pp.52-56.

UDC identifier
004.942:004.896:004.383.8

References

  1. Wolpaw, J. and Wolpaw, E. (2012). Brain-computer interfaces. NY: Oxford University Press, p.400.
  2. Daly, I., Billinger, M., Laparra-Hernández, J., Aloise, F., García, M., Faller, J., Scherer, R. and Müller-Putz, G. (2013). On the control of brain-computer interfaces by users with cerebral palsy. Clinical Neurophysiology, 124(9), pp.1787-1797.
  3. Frolov, A. and Roshin, V. (2008). Interfeys mozg-komp'yuter. Real'nost' i perspektivy [Brain computer interface. Reality and perspectives]. In: Nauchnaya konferentsiya po neyroinformatike MIFI 2008. Lektsii po neyroinformatike [Scientific conference on neuroinformatic MIFI 2008. Lections on neuroinformatics]. [online] Available at: http://neurolectures.narod.ru/2008/Frolov-2008.pdf [Accessed 1 May 2017].
  4. Kaplan, A. and et al (2013). Eksperimental'no-teoreticheskie osnovaniya i prakticheskie realizatsii tekhnologii «interfeys mozg – komp'yuter [Experimental-theoretic bases and practical realizations of Brain computer interface technology ]. Byulleten' sibirskoy meditsiny [Syberia medicine bulletin], 12(2), pp.21-29.
  5. Hsu, W. (2013). Embedded Grey Relation Theory in Hopfield Neural Network: Application to Motor Imagery EEG Recognition. Clinical EEG and Neuroscience, 44(4), pp.257-264.
  6. Dandan Huang, Lin, P., Ding-Yu Fei, Xuedong Chen and Ou Bai (2009). EEG-based online two-dimensional cursor control. 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. [online] Available at: http://ieeexplore.ieee.org/abstract/document/5332722/ [Accessed 1 May 2017].
  7. Sonkin, K., Stankevich, L., Khomenko, J., Nagornova, Z. and Shemyakina, N. (2015). Development of electroencephalographic pattern classifiers for real and imaginary thumb and index finger movements of one hand. Artificial Intelligence in Medicine, 63(2), pp.107-117.
  8. Stankevich, L., Sonkin, K., Shemyakina, N., Nagornova, Z., Khomenko, J., Perets, D. and Koval, A. (2016). EEG pattern decoding of rhythmic individual finger imaginary movements of one hand. Human Physiology, 42(1), pp.32-42.
  9. Neuper, C., Scherer, R., Reiner, M. and Pfurtscheller, G. (2005). Imagery of motor actions: Differential effects of kinesthetic and visual–motor mode of imagery in single-trial EEG. Cognitive Brain Research, 25(3), pp.668-677.
  10. Asensio-Cubero, J., Gan, J. and Palaniappan, R. (2016). Multiresolution analysis over graphs for a motor imagery based online BCI game. Computers in Biology and Medicine, [online] 68, pp.21-26. Available at: http://dx.doi.org/10.1016/j.compbiomed.2015.10.016 [Accessed 1 May 2017].
  11. Singh, A. and Chakraborty, M. (2015). Mel Frequency Cepstrul Coefficients Based Pattern Recognition for Limb Motor Action. International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering, 4(6), pp.5327-5332.
  12. Lotte, F., Congedo, M., Lécuyer, A., Lamarche, F. and Arnaldi, B. (2007). A review of classification algorithms for EEG-based brain–computer interfaces. Journal of Neural Engineering, 4(2), pp.1-13.
  13. Cortes, C. and Vapnik, V. (1995). Support-Vector Networks. Machine Learning, 20(3), p.273.
Editorial office address: 21, Tikhoretsky pr., Saint-Petersburg, Russia, 194064, tel.: +7(812) 552-13-25 e-mail: zheleznyakov@rtc.ru