OBJECT-ORIENTED MODELING OF MANIPULATION SYSTEMS DYNAMICS BASED ON TRANSFORMATION MATRICES OF HOMOGENEOUS COORDINATES

OBJECT-ORIENTED MODELING OF MANIPULATION SYSTEMS DYNAMICS BASED ON TRANSFORMATION MATRICES OF HOMOGENEOUS COORDINATES

O.N. Krakhmalev
PhD in Technical Sciences, Bryansk State Technical University, Assistant Professor, 7, Bulvar 50-letiya Oktyabrya, Bryansk, 241035, Russia, tel.: +7(4832)58-82-85, This email address is being protected from spambots. You need JavaScript enabled to view it.


Abstract
An object-oriented approach is proposed for building of the dynamic models of manipulation systems. Dynamic models are obtained on the basis of the Lagrange-Euler method using transformation matrices of homogeneous coordinates. The advantages and prospects of this method are indicated and compared with the Newton-Euler method. By the examples of concrete dynamic models, the structure of classes is distinguished. The classes correspond to the objects of the dynamic models. The proposed structure of the base and derived classes allows building of various dynamic models. This approach can be implemented in modeling of the motion of manipulation robots and mechatronic devices.

Key words
Dynamics of systems of bodies, dynamic models, Lagrange-Euler method, Newton-Euler method, open kinematic structures, manipulation systems, manipulation robots, motion modeling, homogeneous coordinate transformation matrices, object-oriented approach.

Bibliographic description
Krakhmalev, O. (2017). Object-Oriented Modeling of Manipulation Systems Dynamics Based on Transformation Matrices of Homogeneous Coordinates. Robotics and Technical Cybernetics, 2(15), pp.32-36.

UDC identifier
531.391+621.865.8

References

  1. Fu, K., Gonsales, R. and Li, K. (1989). Robototekhnika [Robotics]. 1st ed. Moscow: Mir, p.624.
  2. Buslenko, N. (1978). Modelirovanie slozhnykh sistem [Complex systems modeling]. 1st ed. Moscow: Nauka Publ., p.400.
  3. Kosenko, I. (2016). Primenenie ob"ektno-orientirovannoy paradigmy dlya postroeniya modeli dinamiki sistem tel [Object-oriented paradigm application for modeling of dynamics of bodies systems]. In: III Mezhdunarodnaya Shkola-konferentsiya molodykh uchenykh «Nelineynaya dinamika»: sb. trudov [III International Conference and Seminar for Young Scientists on Nonlinear Dynamics: Proceedings]. pp.176-188.
  4. Pogorelov, D. (2001). Algoritmy sinteza i chislennogo integrirovaniya uravneniy dvizheniya sistem tel s bol'shim chislom stepeney svobody [Synthesis algorithm and numerical integration of motion equations for systems of bodies with great number of degrees of freedom]. In: VIII Vserossiyskiy s"ezd po teoreticheskoy i prikladnoy mekhanike [VIII All-Russian Congress on Theoretical and Applied Mechanics].
  5. Kozlov, V. and et.al. (1984). Dinamika upravleniya robotami [Robots' Control Dynamics]. 1st ed. Moscow, p.336.
  6. Krakhmalev, O. (2012). Matematicheskoe modelirovanie dinamiki manipulyatsionnykh sistem promyshlennykh robotov i kranov-manipulyatorov: monografiya [Mathematical modeling of dynamics for manilation systems of industrial robots and articulated cranes: monograph]. 1st ed. Russia, Bryansk: BGTU Publ., p.200.
Editorial office address: 21, Tikhoretsky pr., Saint-Petersburg, Russia, 194064, tel.: +7(812) 552-13-25 e-mail: zheleznyakov@rtc.ru