DYNAMIC ANALYSIS OF THE TWO-LINKS MANIPULATOR WITH NONCOLLINEAR JOINTS

DYNAMIC ANALYSIS OF THE TWO-LINKS MANIPULATOR WITH NONCOLLINEAR JOINTS

V.A. Leont'ev
PhD in Physics and Mathematics, Russian State Scientific Center for Robotics and Technical Cybernetics (RTC), Senior Research Scientist, 21, Tikhoretsky pr., Saint-Petersburg, 194064, Russia, tel.: +7(812)297-30-58, This email address is being protected from spambots. You need JavaScript enabled to view it., This email address is being protected from spambots. You need JavaScript enabled to view it.

A.S. Smirnov
Peter the Great Saint-Petersburg Polytechnical University (SPbPU), Assistant, 29, Politekhnicheskaya ul., Saint-Petersburg, 195251, Russia, tel.: +7(812)552-77-78, This email address is being protected from spambots. You need JavaScript enabled to view it.

B.A. Smolnikov
PhD in Physics and Mathematics, RTC, Professor, Senior Research Scientist, 21, Tikhoretsky pr., Saint-Petersburg, 194064, Russia, tel.: +7(812)552-77-78, This email address is being protected from spambots. You need JavaScript enabled to view it.


Received 15 January 2018

Abstract
Dynamic analysis of the spatial two-link pendulum movements is implemented in the article. This allows using these movements for manipulation, locomotion and other shunting movements of the robot with noncollinear joints. All the necessary analytical expressions for dynamic effects calculating, including gyroscopic effects, are presented. The kinetic and potential energy values are found, and differential equations of motion containing the basic parameters of the orthogonal two-link pendulum are derived. A number of specific dynamic problems related to the free movement of the end load are considered on the basis of these equations. Knowledge of these movements is necessary for the optimal modes synthesis of the controlled end load movement or for synthesizing the performance of necessary working movements.

Key words
Manipulator, pedipulator, two-link pendulum, non-collinear joints, orthogonal pendulum, gyroscopic forces.

Bibliographic description
Leont'ev, V., Smirnov, A. and Smolnikov, B. (2018). Dynamic analysis of the two-links manipulator with noncollinear joints. Robotics and Technical Cybernetics, 1(18), pp.56-60.

UDC identifier:
531.39

References

  1. Smolnikov, B. (2016). Problemy mehaniki v sovremennoj robototehnike [Mechanics problems in advanced robotics]. Robotics and technical cybernetics, 1(10), pp. 3-6.
  2. Smolnikov, B. and Yurevich, E. (2015). K probleme biomorfnogo upravlenija dvizhenijami robotov [About the problem of biomorphic motion control]. Robotics and technical cybernetics, 1(6), pp. 17-20.
  3. Smolnikov, B. (1991). Problemy mehaniki i optimizacii robotov [Problems of mechanics and optimization of robots]. Moscow: Nauka, p. 232.
  4. Smirnov, A. and Smolnikov, B. (2017). Staticheskij analiz dvuhzvennogo manipuljatora s nekollinearnymi sharnirami [Static analysis of the two-links manipulator with noncollinear joints]. Robotics and technical cybernetics, 4(17), pp. 47-51.
  5. Karman, T. and Bio, M. (1946). Matematicheskie metody v inzhenernom dele [Mathematical Methods in Engineering]. Moscow: GITTL, p. 423.
  6. Lurie, A. (1961). Analiticheskaja mehanika [Analytical mechanics]. Moscow: GIFML, p. 824.
  7. Skarboro, D. (1961). Giroskop. Teorija i primenenie. [Gyroscope. Theory and application]. Moscow: publ. house of foreign literature, p. 247.
  8. Smolnikov, B. and Leontev, V. (2013). Elementy stroitel'noj mehaniki orbital'nyh trosovyh konstrukcij [Elements of structural mechanics of orbital cable structures]. Modern engineering. Science and education, 3, pp. 1021-1031.

 

Editorial office address: 21, Tikhoretsky pr., Saint-Petersburg, Russia, 194064, tel.: +7(812) 552-13-25 e-mail: zheleznyakov@rtc.ru