Design principles of control systems for self-driving unmanned ground vehicles

Design principles of control systems for self-driving unmanned ground vehicles

Alexander A. Tachkov
PhD in Technical Sciences, Federal State Budgetary Educational Institution of Higher Education «Bauman Moscow State Technical University» (BMSTU), Science and Educational Center «Robotics», Department «Automated transport systems», Head of Department, 7, Izmaylovskaya pl., Moscow, 105037, Russia, This email address is being protected from spambots. You need JavaScript enabled to view it., ORCID: 0000-0002-8330-8750

Alexey V. Kozov
BMSTU, Science and Educational Center «Robotics», Department «Automated transport systems», Engineer, 7, Izmaylovskaya pl., Moscow, 105037, Russia, This email address is being protected from spambots. You need JavaScript enabled to view it., ORCID: 0000-0002-9997-0386

Dmitriy S. Iakovlev
BMSTU, Science and Educational Center «Robotics», Department «Automated transport systems», Engineer, 7, Izmaylovskaya pl., Moscow, 105037, Russia, This email address is being protected from spambots. You need JavaScript enabled to view it., ORCID: 0000-0002-6999-407X

Nikita A. Buzlov
BMSTU, Science and Educational Center «Robotics», Department «Automated transport systems», Engineer, 7, Izmaylovskaya pl., Moscow, 105037, Russia, This email address is being protected from spambots. You need JavaScript enabled to view it., ORCID: 0000-0002-0723-6812

Semion Yu. Kurochkin
BMSTU, Science and Educational Center «Robotics», Department «Automated transport systems», Junior Research Scientist, 7, Izmaylovskaya pl., Moscow, 105037, Russia, This email address is being protected from spambots. You need JavaScript enabled to view it., ORCID: 0000-0001-8659-7191


Received September 30, 2021.

Abstract
The self-driving unmanned ground vehicles (UGV) design problem is analyzed in this paper. Two methodological problems of UGV design are formulated. The first problem is the difference between the purpose of creating a self-driving automobile from UGV, which leads to fundamentally different systemic solutions. The second methodological problem is associated with the need for sufficiently deep knowledge and the ability to work with a number of technologies that are used in the complex to create a control system for self-driving. The joint analysis of these problems allowed us to put forward a number of control systems design principles for self-driving UGV, including the principle of upcycling, the principle of using a discrete-event model for the logical synchronization of the operation of modules and the principle of ensuring the functional safety of the UGV during autonomous movement. The principle of using the discrete-event model for synchronizing the operation of software modules is explained by the example of a Petri net. A general solution to the problem of quantitative evaluation of the safety of autonomous movement of UGV is presented. The considered principles were used during development of prototypes of self-driving control systems for various purposes.

Key words
Control system for self-driving, unmanned ground vehicle, design principles, navigation, modular construction, ROS.

DOI
10.31776/RTCJ.10205

Bibliographic description
Tachkov, A. et al., 2022. Design principles of control systems for self-driving unmanned ground vehicles. Robotics and Technical Cybernetics, 10(2), pp.121-132.

UDC identifier:
681.51:629.3:007.52

References 

  1. Markov, A.E., 2020. Sistema dvizheniya po zadannoj traektorii dlya bespilotnogo avtomobilya [System of movement along a given trajectory for an unmanned vehicle]. Izvestiya VolGTU, 9(244), pp.52–56, DOI: 10.35211/1990-5297-2020-9-244-52-56. (in Russian).
  2. Kato, S. et al., 2018. Autoware on board: enabling autonomous vehicles with embedded systems. In: 2018 ACM/IEEE 9th International Conference on Cyber-Physical Systems (ICCPS), pp.287–296, DOI: 10.1109/ICCPS.2018.00035.
  3. Habr, u.d. Drone in practice: some details about the test car from StarLine. Available at: <https://habr.com/ru/company/leader-id/blog/545428/> (Accessed 9 April 2022).
  4. Shadrin, S., 2017. Methodology for creating traffic control systems for autonomous wheeled vehicles integrated into an intelligent transport environment. Doctor of Technical Science. Moscow. Bauman University. Available at: <https://elibrary.ru/item.asp?id=30440521> (Accessed 9 April 2022).
  5. Kalinin, A.V., Noskov, V.P. and Rubcov I.V., 2012. Sredstva, obespechivayushchie avtonomnoe dvizhenie nazemnyh RTK [Means providing autonomous movement of ground-based RTK]. Izvestiya YUFU. Tekhnicheskie Nauki. [Izvestiya YUFU. Technical science], 11(136), pp.71–81. (in Russian).
  6. Korchak, V.Yu., Rubcov, I.V. and Ryabov, A.V., 2013. Sostoyanie i perspektivy razvitiya nazemnykh robototekhnicheskikh kompleksov spetsial'nogo naznacheniya [State and prospects for the development of ground-based robotic systems for special purposes]. Inzhenernyj Zhurnal: Nauka i Innovacii [Engineering Journal: Science and Innovation], 3, Available at: < http://engjournal.ru/catalog/pribor/robot/628.html> (Accessed 9 April 2022). (in Russian).
  7. Varganov, V.V. et al., 2018. Struktura intellektual'noj sistemy upravleniya nazemnogo robototekhnicheskogo kompleksa dlya formirovaniya marshruta dvizheniya [The structure of the intelligent control system of a ground-based robotic complex for the formation of a route of movement]. Naukoemkie Tekhnologii v Kosmicheskih Issledovaniyah Zemli [Science-Intensive Technologies in Space Exploration of the Earth], 10(2), pp.78–86, DOI: 10.24411/2409-5419-2018-10043. (in Russian).
  8. Susarev, S.V., 2019. Principy postroeniya sistem upravleniya robotizirovannyh transportnyh sredstv s avtonomnym i distancionnym rezhimom upravleniya [Principles of building control systems for robotic vehicles with autonomous and remote control modes]. In: Trudy XXI Mezhdunarodnoj konferencii «Problemy upravleniya i modelirovaniya v slozhnyh usloviyah» [Proceedings of the XXI International Conference «Problems of Control and Modeling in Complex Conditions»]. Samara : OOO «Ofort» Publ., pp.107–110.
  9. Ni, J., Hu, J. and Xiang, C., 2020. A review for design and dynamics control of unmanned ground vehicle. In: Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, DOI:10.1177/0954407020912097.
  10. Mohamed, A., El-Gindy, M. and Ren, J., 2018. Advanced control techniques for unmanned ground vehicle: literature survey. International Journal of Vehicle Performance, 4(1), pp.46–73. DOI: 10.1504/ijvp.2018.088783.
  11. Il'in, L.N., Dul'nev, P.A. and Kovalev, V.G., 2016. Problemy sozdaniya nazemnoj robototekhniki dlya Suhoputnyh vojsk [Problems of creating ground robotics for the Ground Forces]. Voennaya Mysl' [Military Thought], 11, pp.65-71. (in Russian).
  12. Stanford University, u.d. Principles of robot autonomy I: open-source automated driving stack «Autoware». Available at: <URL: http://asl.stanford.edu/aa274a/pdfs/lecture/lecture_21.pdf> (Accessed 11 May 2022).
  13. Severcev, N.A., Beckov A.V. and Prokop'ev, I.V., 2020. Sistemnoe predstavlenie metodologii bezopasnosti [System View of Security Methodology]. Nadezhnost' i Kachestvo Slozhnyh System [Reliability and Quality of Complex Systems], 2(30), pp.26-31. (in Russian).
  14. Baturin, O.S., Antokhin, E.A. and Efremov, E.V., 2017. Metodicheskij podhod k ocenke sistem avtonomnogo upravleniya dvizheniem nazemnyh robototekhnicheskih kompleksov voennogo naznacheniya srednego i tyazhelogo klassov [Methodical approach to estimation of autonomous control systems for ground robotic complexes of medium and heavy classes for military purpose]. Robototekhnika i Tekhnicheskaya Kibernetika [Robotics and Technical Cybernetics], 3(16), pp.33-37. (in Russian).
  15. Antokhin, E.A. et al., 2019. Metodologicheskie osnovy provedeniya ispytanij distancionno-upravlyaemyh nazemnyh robototekhnicheskih kompleksov voennogo naznacheniya srednego i tyazhelogo klassov [Methodological bases for testing remote-controlled ground-based military robotic complexes of medium and heavy classes]. Izvestiya Instituta Inzhenernoy Phiziki. 4(54), pp.28-33. (in Russian).
  16. Iakovlev, D.S. and Tachkov, A.A., 2020. Podsistema obespecheniya bezavarijnogo dvizheniya mobil'nogo robota [Subsystem for ensuring accident-free movement of a mobile robot]. Ekstremal'naya Robototekhnika [Extreme Robotics], pp.56-62. (in Russian).
  17. Volkov, V.F., Galankin, A.V. and ZHigulin Yu.A., 2016. Metodika obosnovaniya struktury sistemy informacionnogo obespecheniya organizacionno-tekhnicheskih sistem na osnove principa garantirovannogo rezul'tata [Methodology for substantiating the structure of the information support system of organizational and technical systems based on the principle of a guaranteed result]. T-Comm: Telekommunikaciya i Transport [T-Comm: Telecommunications and Transport], 10(4), pp.52–57. (in Russian).
  18. Yuschenko, A.S., 2019. Ergonomicheskie problemy kollaborativnoj robototekhniki [Ergonomic problems of collaborative robotics]. Robototekhnika i Tekhnicheskaya Kibernetika [Robotics and Technical Cybernetics], 7(2), pp.85-93, DOI: 10.31776/RTCJ.7201. (in Russian).
  19. Rudianov, N.A. and Hrushchev, V.S., 2019. Funkcional'nyj podhod k proektirovaniyu specializirovannyh robototekhnicheskih kompleksov [Functional approach to the design of specialized robotic systems]. Izvestiya YUFU. Tekhnicheskie Nauki. [Izvestiya YUFU. Technical science], 1, pp.18–27, DOI 10.23683/2311-3103-2019-1-18-27. (in Russian).
  20. Tachkov, A.A., Vukolov, A.Yu. and Kozov, A.V., 2019. Osobennosti portirovaniya Robot Operating System na programmno-apparatnuyu platformu «El'brus» [Features of porting the Robot Operating System to the «Elbrus» hardware and software platform]. Programmnye Produkty i Sistemy [Software Products and Systems], 4, pp.655–664, DOI: 10.15827/0236-235X.128.655-664. (in Russian).
  21. Sokolov, S.M., Boguslavskij, A.A. and Romanenko, S.A., 2021. Realizaciya algoritmov obrabotki zritel'nyh dannyh na bortovyh vychislitel'nyh resursah [Implementation of the visual data processing algorithms for onboard computing units]. Robototekhnika i Tekhnicheskaya Kibernetika [Robotics and Technical Cybernetics], 9(2), pp.106-111. (in Russian).
  22. Besl, P.J. and McKay, N.D., 1992. A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14, pp.239-256.
  23. Biber, P. and Strasser, W., 2003. The normal distributions transform: A new approach to laser scan matching. In: Proceedings of Intelligent Robots and Systems, 3, pp.2743-2748, DOI 10.1109/IROS.2003.1249285.
  24. Tipaldi, G.D., Braun, M. and Kai O., 2010. FLIRT: Interest Regions for 2D Range Data with Applications to Robot Navigation. Int. Symposium on Experimental Robotics (ISER).
  25. Steder, B., Radu Bogdan Rusu and Burgard, W., 2011. Point feature extraction on 3D range scans taking into account object boundaries. Computer Science. IEEE International Conference, DOI:10.1109/ICRA.2011.5980187.
  26. Radu Bogdan Rusu, Blodow, N. and Beetz, M., 2009. Fast Point Feature Histograms (FPFH) for 3D registration. IEEE International Conference on Robotics and Automation.
  27. Buzlov, N.A., 2021. Posledovatel'noe sravnenie skanov dlya navigatsii mobil'nogo robota v usloviyakh slabostrukturirovannoy mestnosti [Scanmatching for navigation of a mobile robot in semi-structured terrain condition]. Mekhatronika, Avtomatizatsiya, Upravlenie [Mechatronics, Automation, Control], 22(5), pp.246-254. (in Russian).
  28. Maksimov, A.A., 2012. Odin podhod k postroeniyu konechno-avtomatnoj upravlayuschej seti [One approach to building a finite automaton control network]. Inzhenernyj Zhurnal: Nauka i Innovatsii [Engineering Journal: Science and Innovations], 6, pp.14-28. (in Russian).
  29. Severcev, N.A. and Beckov, A.V., 2019. Sistemnyj Analiz Teorii Bezopasnosti. Moscow: YUrajt Publ., p.456. (in Russian).
  30. Iakovlev, D.S., 2021. Collision risk analysis to ensure the safety of autonomous vehicle motion control. International Russian Automation Conference, pp.644-649, DOI: 10.1109/RusAutoCon52004.2021.9537403.
  31. Iakovlev, D.S. and Tachkov, A.A., 2021. Veroyatnost' stolknoveniya avtonomnogo mobil'nogo robota s prepyatstviem [The probability of an autonomous mobile robot colliding with an obstacle]. Mekhatronika, Avtomatizatsiya, Upravlenie [Mechatronics, Automation, Control], 22(3), pp.125-133. DOI: 10.17587/mau.22.125-133. (in Russian).
  32. Liu, S.B. et al., 2017. Provably Safe Motion of mobile robots in human environments. International Conference on Intelligent Robots and Systems (IROS-2017).