Simulation of rectilinear motion of wheeled robot with electromechanical powertrain

 cover 1 22 2019

Simulation of rectilinear motion of wheeled robot with electromechanical powertrain

Kirill A. Smirnov *
Bauman Moscow State Technical University, Center of Education and Research «Robotics», Engineer, 7, Izmailovskaya pl., Moscow, 105037, Russia, tel.: +7(909)690-85-25, This email address is being protected from spambots. You need JavaScript enabled to view it.

Semen Yu. Kurochkin
Bauman Moscow State Technical University, Center of Education and Research «Robotics», Graduate Student, 7, Izmailovskaya pl., Moscow, 105037, Russia, This email address is being protected from spambots. You need JavaScript enabled to view it.


Received 02 August 2018

Abstract
In this paper the model of an autonomous wheeled robot with an electromechanical powertrain moving rectilinearly is described. The proposed model of the 4-wheeled car-like robot with front and rear-wheel drive is performed in the Matlab/Simulink environment and represents the features of the «flexible» transmissions (the ability to adjust required torque between axes at any specific time depending on motion conditions). The simulation results correlate well with the research results of other authors and prove the consistency of the model.

Key words
Wheeled robot, wheel drive, torque, power circulation, mathematical model, simulation.

DOI
https://doi.org/10.31776/RTCJ.7106 

Bibliographic description
Smirnov, K. (2019). Simulation of rectilinear motion of wheeled robot with electromechanical powertrain. Robotics and Technical Cybernetics, 7(1), pp.46-52.

UDC identifier:
681.511.26

References

  1. Ageikin, Y. (1981). Prokhodimost' Avtomobilei [Automobile Flotation]. Moscow: Mashinostroenie Publ., p.232. (In Russ.).
  2. Aksenov, P. (1989). Mnogoosnye Avtomobili [Multiaxle Vehicle]. Moscow: Mashinostroenie Publ., p.291. (In Russ.).
  3. Antonov, D. (1984). Teoriya Ustoichivosti Dvizheniya Mnogoosnykh Avtomobilei [Theory of Motion Stability for Multiaxle Vehicles]. Moscow: Mashinostroenie Publ., p.168. (In Russ.).
  4. Antonov, D. (1984). Raschet Ustoichivosti Dvizheniya Mnogoosnykh Avtomobilei [Calculation of Motion Stability for Multiaxle Vehicles]. Moscow: Mashinostroenie Publ., p.168. (In Russ.).
  5. Kotiev, G., Gorelov, V. and Miroshnichenko, A. (2011). Sintez sistemy upravleniya tyago-vymi elektrodvigatelyami dlya individual'nogo privoda vedushchikh koles avtomobilya [Control system synthesis of drive motor for leading wheels' independent drive]. Nauka i obrazovanie [Science and Education], [online] 12(77-30569/282533). Available at: http://techomag.edu.ru/doc/282533.html [Accessed 28 May 2018].
  6. Kochnev, A. (2009). Matematicheskaya model' tsirkulyatsii moshchnosti v transmissii kolesnogo trelevochnogo traktora [Mathematical model of power circulation in wheeled skidder transmission]. Lesnoi Zhurnal, pp.7-14. (In Russ.).
  7. Litvinov, A. (1971). Ustoichivost' i Upravlyaemost' Avtomobilya [Flotation and Steerability of Vehicle]. Moscow: Mashinostroenie Publ., p.416. (In Russ.).
  8. Polungyan, A. and et al. (2008). Proektirovanie polnoprivodnykh kolesnykh mashin [All-wheel-drive Vehicle Design]. Vol. 2. Moscow: Baumana MGTU Publ., p.528. (In Russ.).
  9. Chudakov, E. (1950). Tsirkulyatsiya parazitnoi moshchnosti v mekhanizmakh bezdifferentsial'nogo avtomobilya [Parasitic Losses Circulation in Nondifferential Vehicles’ Devices]. Moscow: Mashinostroenie Publ., p.291. (In Russ.).
  10. Maeda, K., Fujimoto, H. and Hori, Y. (2012). Four-wheel driving-force distribution method based on driving stiffness and slip ratio estimation for electric vehicle with in-wheel motors. In: 2012 IEEE Vehicle Power and Propulsion Conference.
  11. Pacejka, H. and Bakker, E. (1992). The magic formula tyre model. International Journal of Vehicle Mechanics and Mobility, 21, p.18.
  12. Yoshimura, M. and Fujimoto, H. (2010). Slip ratio control of electric vehicle with single-rate PWM considering driving force. In: The 11th IEEE International Workshop on Advanced Motion Control. pp.738-743.
  13. Ziegler, J. and Nichols, N. (1993). Optimum Settings for Automatic Controllers. Journal of Dynamic Systems, Measurement, and Control, 115(2B), p.220.
Editorial office address: 21, Tikhoretsky pr., Saint-Petersburg, Russia, 194064, tel.: +7(812) 552-13-25 e-mail: zheleznyakov@rtc.ru