ADAPTIVE VISUAL SERVOING OF ROBOTS

 cover 3 16 2017

ADAPTIVE VISUAL SERVOING OF ROBOTS

V.P. Makarychev
PhD in Technical Sciences, Russian State Scientific Center for Robotics and Technical Cybernetics (RTC), Senior Research Scientist, 21, Tikhoretsky pr., Saint-Petersburg, 194064, Russia, tel.: +7(812)552-07-80, This email address is being protected from spambots. You need JavaScript enabled to view it.


Abstract
Results of the researches on visual servoing of robots are described. Unified structure of controlling system and adaptive control algorithms based on application of adaptive image-processing methods are suggested.

Key words
Adaptation, servo control, visualization, transformation groups, computer vision, images.

Bibliographic description 
Makarychev, V. (2017). Adaptive visual servoing of robots. Robotics and Technical Cybernetics, 3(16), pp.38-43.

UDC identifier
004.93'1:62-50:007.52

References

  1. Makarychev, V. and Yurevich, E. (2005). Supervizornoe upravlenie kosmicheskimi manipulyatorami [Supervisory Control of Space Manipulator]. Asterion Publ., p.108.
  2. Babkin, E. and et al (2011). Supervizornoe upravlenie kosmicheskim robotom na Mezhdunarodnoy kosmicheskoy stantsii (MKS) s ispol'zovaniem seti Internet [Supervisory control of space robot on International Space Station (ISS) with use of Internet]. In: XIV Vserossiyskaya nauchno-prakticheskaya konferentsiya Aktual'nye problemy zashchity i bezopasnosti «Ekstremal'naya robototekhnika» [All-Russian Science and Practical Conference on Current Problems of Defence and Safety - Extreme Robotics]. pp.32-42.
  3. Zhukov, A. and Makarychev, V. (2016). Sravnitel'nyy analiz algoritmov upravleniya podvodnym apparatom [Comparative Analysis of Control Algorithms for Underwater Vehicle]. In: Nedelya nauki SPbPU: mater. nauchn. konf. s mezhd. uch. (Institut metallurgii, mashinostroeniya i transporta) [Science Week in SpbPU: Proceedings of Science Conference with International Participation (Institute of Metallurgy, Engineering and Transport)]. pp.42-45.
  4. Leont'ev, V. and Makarychev, V. (2016). Programma chislennogo modelirovaniya dinamiki i sistemy upravleniya podvodnogo apparata, realizovannaya v programmnoy srede MATLAB-SIMULINK (programma Submersible) [Program of Numerical Simulation of Dynamics and Control System of Underwater Vehicle Implemented in MATLAB-SIMULINK environment (programme Submersible)]. 2017611332.
  5. Leont'ev, V. and Makarychev, V. (2016). Komp'yuternyy programmnyy kompleks upravleniya dvizheniem modeli avtonomnogo podvodnogo apparata, sostoyashchiy iz ego matematicheskoy modeli v programmnoy srede ADAMS/VIEW i vnedrennogo v nee modulya upravleniya, razrabotannogo v srede MATLAB-SIMULINK [Computer-based software system of motion control for the model of autonomous underwater vehicle consisting of its mathematical model in ADAMS/VIEWsoftware environment and integrated in it control module developed in MATLAB-SIMULINK environment]. 2017611307.
  6. Korsakov, A., Makarychev, V. and Fomin, I. (2017). Programma dlya eksperimental'noy proverki algoritma opredeleniya polozheniya i orientatsii transportnogo sredstva [Program for experimental validation of algorithm of position determination and orientation of vehicle]. 2017614156.
  7. Timofeev, A. (1980). Postroenie programmnykh traektoriy v adaptivnoy sisteme upravleniya [Program Trajectory Building in Adaptive Control System]. Moscow: Energia Publ., p.108.
  8. Makarychev, V. (2008). Metod peremennykh strategiy postroeniya traektoriy robotov v srede s prepyatstviyami [Method of variable strategies of robots' trajectory buildings in environment with obstacles]. Iskusstvennyy intellekt [Artificial Intelligence], 3, pp.451–461.
  9. Shapiro, L. and Stockman, G. (2001). Computer vision. Upper Saddle River,NJ: Pearson Education. Inc. Prentice Hall.
  10. Forsyth, D. and Ponce, J. (2003). Computer Vision: A Modern Approach. p.928.
  11. Paul, R. (1972). Modelling, Trajectory Calculation and Servoing of a Computer Controlled Arm. Stanford Artificial Intelligence Project, Memo AIM-177, Computer Science Department Report CS-311.
  12. Timofeev, A. and Ekalo, Y. (1976). Ustoychivost' i stabilizatsiya programmnykh traektoriy robota manipulyatora [Stability and stabilization of program trajectories of robot manipulator]. Avtomatika i telemekhanika [Automatics and Telemechanics], 10, pp.148-156.
  13. Dinamika upravleniya robotami [Robot Control Dynamics]. (1984). Moscow: Nauka Publ. Gl. red. fiziko-matematicheskoy literatury, p.336.
  14. Kozlov, V., Konovalov, A. and Makarychev, V. (2012). Postroenie adaptivnykh algoritmov servoupravleniya na osnove obratnykh zadach dinamiki i neyronnykh setey [Servo-powered Control Manipulators Adaptive Algorithms Construction on the Basis of the Inverse Problems of Dynamics and Neuron Networks]. Informatsionno-upravlyayushchie sistemy - Information and Control Systems, 3(58), pp.29-32.
  15. Kozlov, V. and Makarychev, V. (2008). Diagnostika funktsionirovaniya oborudovaniya na osnove identifikatsionnykh algoritmov: uch. posobie [Diagnostics of equipment functioning based on identification algorithm: textbook]. Saint-Petersburg, p.88.
  16. Davison, A. (1998). Mobile Robot Navigation Using Active Vision. Ph.D. University of Oxford.
  17. Beauchemin, S. and Barron, J. (1995). The Computation of Optical Flow. Ontario, Canada: Dept. of Computer Science, University of Western Ontario, N6A 5B7, p.44.
  18. Makarychev, V. (2008). Application of Optical Flow and Methods of Group Lee Representation in Problems of Detecting of Movements and Pattern Detection on the Images. In: Solid State Phenomena. Mechatronic Systems and Materials III. Vol. 145. pp.582-587.
  19. Hutchinson, S., Hager, G. and Corke, P. (1996). A tutorial on visual servo control. IEEE Trans. Robot. Automat., 12, pp.651-670.
  20. Nasisi, O. and Carelli, R. (2003). Adaptive servo visual robot control. Robotics and Autonomous Systems, 43(1), pp.51-78.
  21. Chaumette, F. and Hutchinson, S. (2006). Visual servo control. I. Basic approaches. IEEE Robotics Automation Magazine, 13(4), pp.82-90.
  22. Chaumette, F. and Hutchinson, S. (2007). Visual servo control. II. Advanced approaches [Tutorial]. IEEE Robotics & Automation Magazine, 14(1), pp.109-118.
  23. Collewet, C., Marchand, E. and Chaumette, F. (2008). Visual servoing set free from image processing. In: IEEE Int. Conf. on Robotics and Automation, ICRA'08.
  24. Makarychev, V. (2008). Opticheskie potoki i metody teorii predstavleniya grupp Li v zadachakh obrabotki izobrazheniy [On using optical streams and methods of Lie groups representation theory in the problems of movements determination and images detection in pictures]. Nauchno-tekhnicheskie vedomosti SPbGPU. Osnovnoy vypusk [St. Petersburg Polytechnic University Journal of Engineering Science and Technology], 3(59), pp.30-37.
  25. Makarychev, V. (2010). Metod lokal'noy korrelyatsii dlya opredeleniya i identifikatsii affinno-invariantnykh ob"ektov na izobrazheniyakh [Method of local correlation for determination and identification of affine-invariant objects in images]. In: 5-aya Vserossiyskaya konferentsiya "Prodvinutye sistemy i problemy upravleniya» [V All-Russian Conference on Advanced Systems and Problems of Control]. Izdatel'skiy dom TTI SFU, pp.85-89.
  26. Makarychev, V. (2011). Postroenie traektoriy dvizheniya robotov po diskretnoy posledovatel'nosti videokadrov [Robots motion trajectory building by discrete-time sequence of video frames]. In: XIV Vserossiyskaya nauchno-prakticheskaya konferentsiya RARAN. Aktual'nye problemy zashchity i bezopasnosti «Ekstremal'naya robototekhnika»: trudy [XIV All-Russian Research and Practical Conference on Extreme Robotics: proceedings]. pp.49-55.
  27. Makarychev, V. (2012). Algoritmy raspoznavaniya affinno-invariantnykh obrazov na osnove metodov lokal'noy korrelyatsii [Recognition algorithms for affine-invariant images based on local correlation methods]. In: Vserossiyskaya nauchno-prakticheskaya konferentsiya «Ekstremal'naya robototekhnika» [All-Russian Research and Practical Conference on Extreme Robotics]. pp.181-187.
  28. Makarychev, V. (2014). Finding the affine-invariant images of tasks for navigation, image recognition and diagnosis autonomous robots. Robotics and Technical Cybernetics, 1(2), pp.75-78.

 

Editorial office address: 21, Tikhoretsky pr., Saint-Petersburg, Russia, 194064, tel.: +7(812) 552-13-25 e-mail: zheleznyakov@rtc.ru